• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 53
  • 53
  • 47
  • 23
  • 19
  • 16
  • 16
  • 15
  • 13
  • 10
  • 10
  • 10
  • 8
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Tectonic consequences of mid-ocean ridge evolution and subduction

Whittaker, Joanne. January 2008 (has links)
Thesis (Ph. D.)--University of Sydney, 2008. / Includes graphs and tables. Includes list of publications. Title from title screen (viewed December 16, 2008). Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the Division of Geology and Geophysics, School of Geosciences, Faculty of Science. Includes bibliographical references. Also available in print form.
32

Structure and Evolution of the Oceanic Lithosphere-Asthenosphere System from High-Resolution Surface-Wave Imaging

Russell, Joshua Berryman January 2021 (has links)
In this thesis, I investigate the seismic structure of oceanic lithosphere and asthenosphere with a particular focus on seismic anisotropy, using high-resolution surface waves recorded on ocean-bottom seismometers (OBS) in the Pacific and Atlantic Oceans. The NoMelt (~70 Ma) and Young OBS Research into Convecting Asthenosphere (ORCA) (~43 Ma) OBS experiments located in the central and south Pacific, respectively, provide a detailed picture of ``typical'' oceanic lithosphere and asthenosphere and offer an unprecedented opportunity to investigate the age dependence of oceanic upper mantle structure. The Eastern North American Margin Community Seismic Experiment (ENAM-CSE) OBS array located just offshore the Eastern U.S. captures the transition from continental rifting during Pangea to normal seafloor spreading, representing significantly slower spreading rates. Collectively, this work represents a diverse set of observations that improve our understanding of seafloor spreading, present-day mantle dynamics, and ocean basin evolution. At NoMelt, which represents pristine relatively unaltered oceanic mantle, we observe strong azimuthal anisotropy in the lithosphere that correlates with corner-flow induced shear during seafloor spreading. We observe perhaps the first clear Love-wave azimuthal anisotropy that, in addition to co-located Rayleigh-wave and active source Pn constraints, provides a novel in-situ estimate of the complete elastic tensor of the oceanic lithosphere. Comparing this observed anisotropy to a database of laboratory and naturally deformed olivine samples from the literature leads us to infer an alternative ``D-type'' fabric associated with grain-size sensitive deformation, rather than the commonly assumed A-type fabric. This has vast implications for our understanding of grain-scale deformation active at mid-ocean ridges and subsequent thermo-rheological evolution of the lithosphere. At both NoMelt and YoungORCA we observe radial anisotropy in the lithosphere with Vsh > Vsv indicating subhorizontal fabric, in contrast to some recent global models. We also observe azimuthal anisotropy in the lithosphere that parallels the fossil-spreading direction. Estimates of radial anisotropy in the crust at both locations are the first of their kind and suggest horizontal layering and/or shearing associated with the crustal accretion process. Both experiments show asthenospheric anisotropy that is significantly rotated from current-day absolute plate motion as well as rotated from one another, at odds with the typical expectation of plate-induced shearing. This observation is consistent with small-scale density- or pressure-driven convection beneath the Pacific basin that varies in orientation over a length scale of at most ~2000 km and likely shorter. By directly comparing shear velocities at YoungORCA and NoMelt, we show that the half-space cooling model can account for most (~75%) of the sublithospheric velocity difference between the two location when anelastic effects are accounted for. The unaccounted for ~25% velocity reduction at YoungORCA is consistent with lithospheric reheating, perhaps related to upwelling of hot mantle from small-scale convection or its proximity to the Marquesas hotspot. While lithospheric anisotropy is parallel to the fossil-seafloor-spreading direction at both fast-spreading Pacific locations, it is perpendicular to spreading at the ENAM-CSE in the northwest Atlantic where spreading was ultra-slow to slow. Instead, anisotropy correlates with paleo absolute plate motion at the time of Pangea rifting ~180–195 Ma. We propose that ultra-slow-spreading environments, such as the early Atlantic, primarily record plate-motion modified fabric in the lithosphere rather than typical seafloor spreading fabric. Furthermore, slow shear velocities in the lithosphere may indicate that normal seafloor spreading did not initiate until ~170 Ma, 10–25 Myr after the initiation of continental rifting, revising previous estimates. Alternatively, it may shed new light on melt extraction at ultra-slow spreading environments.
33

The statistics of finite rotations in plate tectonics

Hellinger, Steven Jay January 1979 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1979. / Microfiche copy available in Archives and Science. / Bibliography: leaves 73-75. / by Steven J. Hellinger. / Ph.D.
34

Uncertainties in the relative positions of the Australia, Antarctica, Lord Howe and Pacific plates during the tertiary

Stock, Joann Miriam January 1981 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1981. / Microfiche copy available in Archives and Science. / Bibliography: leaves 102-106. / by Joann Miriam Stock. / M.S.
35

Geophysical investigations of the Reykjanes Ridge and Kolbeinsey Ridge seafloor spreading centers

Appelgate, Bruce January 1995 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 1995. / Includes bibliographical references (leaves 77-86). / Microfiche. / ix, 86 leaves, bound ill. (some col.) 29 cm
36

Hydrothermally altered basalts from the Mariana Trough

Trembly, Jeffrey Allen January 1982 (has links)
No description available.
37

Magma chamber structure and Moho reflections along the East Pacific Rise /

Babcock, Jeffrey Matthew, January 1997 (has links)
Thesis (Ph. D.)--University of California, San Diego, 1997. / Vita. Includes bibliographical references.
38

Seafloor spreading processes in protoarc-forearc settings eastern Albanian ophiolite as a case study /

Phillips, Charity M.. January 2004 (has links)
Thesis (M.S.)--Miami University, Dept. of Geology, 2004. / Title from first page of PDF document. Includes bibliographical references (p. 126-129).
39

Mass transport processes and deposits in offshore Trinidad and Venezuela, and their role in continental margin development

Moscardelli, Lorena Gina, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
40

Experimental and seismological constraints on the rheology, evolution, and alteration of the lithosphere at oceanic spreading centers

DeMartin, Brian J., 1976- January 2007 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2007. / Includes bibliographical references (p. 194-197). / Oceanic spreading centers are sites of magmatic, tectonic, and hydrothermal processes. In this thesis I present experimental and seismological constraints on the evolution of these complex regions of focused crustal accretion and extension. Experimental results from drained, triaxial deformation experiments on partially molten olivine reveal that melt extraction rates are linearly dependent on effective mean stress when the effective mean stress is low and non-linearly dependent on effective mean stress when it is high. Microearthquakes recorded above an inferred magma reservoir along the TAG segment of the Mid-Atlantic Ridge delineate for the first time the arcuate, subsurface structure of a long-lived, active detachment fault. This fault penetrates the entire oceanic crust and forms the high-permeability pathway necessary to sustain long-lived, high-temperature hydrothermal venting in this region. Long-lived detachment faulting exhumes lower crustal and mantle rocks. Residual stresses generated by thermal expansion anisotropy and mismatch in the uplifting, cooling rock trigger grain boundary microfractures if stress intensities at the tips of naturally occurring flaws exceed a critical stress intensity factor. / (cont.) Experimental results coupled with geomechanical models indicate that pervasive grain boundary cracking occurs in mantle peridotite when it is uplifted to within 4 km of the seafloor. Whereas faults provide the high-permeability pathways necessary to sustain high-temperature fluid circulation, grain boundary cracks form the interconnected network required for pervasive alteration of the oceanic lithosphere. This thesis provides fundamental constraints on the rheology, evolution, and alteration of the lithosphere at oceanic spreading centers. / by Brian J. deMartin. / Ph.D.

Page generated in 0.0705 seconds