• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Habitat associations and photo-identification of sea otters in Simpson Bay, Prince William Sound, Alaska

Gilkinson, Andrea Karin 12 April 2006 (has links)
Habitat associations of sea otters during resting and feeding were investigated in Simpson Bay, Prince William Sound, Alaska during the summer months of 2001-2003. Sea otter locations collected during boat surveys were overlaid on bathymetry and sediment maps and water depth, sediment type, distance from shore, and position in the bay (peripheral vs. central) was determined for each. Logistic regression analysis was used to determine whether sea otter habitat use was non-random according to any of these habitat variables. Water depth was the most significant habitat association for feeding behavior, with the majority of feeding dives occurring in shallow water less than 20m deep. Position in the bay was the most significant habitat association for resting behavior, with more otters resting in the center of the bay. In addition, digital images taken of the sea otters during the boat surveys of 2002 and 2003 were used to examine the potential of using nose scars to photo-identify individual sea otters. Both male and female sea otters bore nose scars. Forty-five percent of all individuals encountered were considered identifiable from nose scars and a total of 114 individuals were identified. This compares favorably with the results of photo-identification studies of other marine mammals, suggesting that photo-identification may be a useful tool for the individual identification of sea otters as well.
2

Cross-scale habitat selection by terrestrial and marine mammals

Fisher, Jason Thomas 02 November 2011 (has links)
Ecology has been devoted to defining the content of a species’ environment. Defining the extent, or size, of a species’ environment is also pivotal to elucidating species-habitat relationships. More than a home range, this extent integrates an individual’s lifetime experiences with resources, competition, and predators. I theorised that a species’ habitat extent is identifiable from its characteristic spatial scale of habitat selection, which in turn is predicted by body size. I reviewed scale-dependent mammalian habitat selection studies and found that a characteristic scale was typically not identified, but identifiable. Of several ecological predictors tested, only body mass was a significant predictor of the relative size of a species’ characteristic habitat selection scale. Tests of existing data are confounded by differing approaches, so I empirically tested the scale-body mass hypothesis using a standardised survey of 12 sympatric terrestrial mammal species from the Canadian Rocky Mountains. For each species, support for habitat models varied across 20 scales tested. For six species, I found a characteristic selection scale, which was best predicted by species body mass in a quadratic relationship. Occurrence of large and small species was explained by habitat measured at large scales, whereas medium- sized species were explained by habitat measured at small scales. The relationship between body size and habitat selection scale is congruent with the textural-discontinuity hypothesis, and implies species’ evolutionary adaptation to landscape heterogeneity as the driver of scale-dependent habitat selection. I applied this principle to examine wolverine habitat selection, and found that anthropogenic fragmentation of the landscape influences that species’ occurrence in space at large spatial scales. Finally, I contended that the prevailing paradigm equating habitats to resources omits interspecific interactions that are key predictors of a species’ occurrences. I examined habitat selection of martens and fishers in terrestrial environments, and sea otters in marine coastal environments, and tested whether the presence of heterospecifics could explain spatial occurrence beyond landscape structure and resources. In both cases, the presence of heterospecifics explained species occurrence beyond simple resource selection. Interspecific interactions are key drivers of a species’ distribution in space; this is the spatial expression of the concepts of fundamental and realized niches. Body size interacts with landscape structure to determine the scale of a species’ response to its environment, and within this habitat extent, interspecific interactions affect the species’ pattern of occurrence and distribution. / Graduate
3

Livable Communities

Vice President Research, Office of the January 2009 (has links)
What makes a community sustainable? Is it the effective management of local environmental resources? Or meeting the social, economic and health needs of its population? For the five UBC researchers in the following pages, the answer is unequivocally both. From tackling water scarcity to environmental health and planning, these researchers are individually working to ensure local communities are equipped with the necessary knowledge to remain sustainable for generations to come.

Page generated in 0.0885 seconds