• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 66
  • 21
  • 11
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Comunidades macrofaunais bênticas associadas às algas de deriva e à grama marinha Halodule wrightii Ascherson na Ilha do Japonês, Cabo Frio, RJ / Macrobenthic communities associated with drift algae and with the seagrass Halodule wrightii Ascherson at Ilha do Japonês, Cabo Frio, RJ

Amanda Ferreira da Silva 04 September 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / As extensas pradarias submersas formadas pelas gramas marinhas são importantes habitats da costa, onde ocorrem interações ecológicas entre diversas espécies da vegetação subaquática, invertebrados bentônicos e peixes. As gramas marinhas e algas de deriva são conhecidas como macrófitas marinhas e, por ocuparem o mesmo tipo de substrato, são normalmente encontradas juntas, proporcionando oxigênio, alimento, proteção, abrigo além de sítios de reprodução e pastagem para os animais associados a essas pradarias. Amostras de algas de deriva e de H. wrightii foram coletadas, ao longo de transectos fixos de 50 m paralelos à Ilha do Japonês, a fim de analisar a existência de relações positivas entre as espécies de macrófitas marinhas e sua macrofauna associada, comparar as duas comunidades e avaliar a estruturação da comunidade macrofaunal bêntica do local. Os transectos foram alocados de acordo com a posição do banco de grama marinha. Observou-se que a densidade de eixos e a biomassa de H. wrightii não explicam a variação da biomassa, riqueza de espécies e diversidade (Índice de Simpson) das algas de deriva. A grande movimentação das algas de deriva ao longo do banco de grama marinha faz com que elas se homogeneízem e ocupem diferentes lugares ao acaso na pradaria, muitos desses locais com baixa biomassa de H. wrightii devido à grande variabilidade na distribuição dessa espécie no local de estudo. Os descritores ecológicos da grama marinha também não tiveram relações positivas com sua macrofauna bêntica associada. A comunidade macrofaunal associada às gramas marinhas foi mais densa, rica e diversa do que a comunidade macrofaunal associada às algas de deriva. Os moluscos Anomalocardia flexuosa, Cerithium atratum, Ostrea sp, Tellina lineata e Divalinga quadrissulcata dominaram o ambiente de gramas marinhas. A maior complexidade estrutural das algas de deriva forneceu um habitat protegido mais atrativo para os crustáceos como, Pagurus criniticornis, Cymadusa filosa e Batea catharinensis. A malacofauna associada às algas não foi abundante, mas um novo registro foi a ocorrência do bivalve invasor Lithopaga aristatus, perfurando uma concha de Ostrea sp. As relações entre os descritores da biomassa algal foram comprovadas para a maioria dos descritores de sua fauna associada. As relações das macrófitas marinhas com a macrofauna total associada seguiram o mesmo padrão das relações das algas de deriva. As análises de agrupamento e ordenação mostraram que as comunidades macrofaunais bênticas do local são estruturadas de acordo com os táxons dos organismos associados mais dominantes influenciados pelo tipo de vegetação basibionte (algas de deriva ou grama marinha). Destaca-se com o presente estudo a importância de medidas de maior proteção no local para a preservação e manutenção do ecossistema da Ilha do Japonês, RJ, Brasil / Extensive submerged meadows formed by seagrasses are an important habitat of the coast, where ecological interactions among different species of the submerged vegetation, benthic invertebrates and fish occur. The seagrasses and drift algae are known as marine macrophytes and, since they often can be found occupying the same substrate, they make a viable coexistence, providing oxygen, food, protection, shelter, besides breeding and grazing sites for the animals associated with these meadows. Samples of drift algae and H. wrightii were collected, along fixed 50 meter transects parallel to the Ilha do Japonês, so as to analyze the relationships between the species of marine macrophytes and the associated macrofauna, compare both communities and assess the structure of the local benthic macrofaunal community. Transects were allocated according to the position of the seagrass bed. It was found that shoot density and biomass of seagrasses did not explain the variation in drift algae biomass, species richness and diversity (Simpson index). The constant movement of the drift algae along the seagrass bed makes the algae homogenize and occupy different places by chance on the meadow, many of these places with low biomass of H. wrigthii, due to the high variability on the distribution of this species in the study area. The descriptors of the seagrassdid not have positive relations with its associated fauna either. Macrobenthos associated with the seagrasses was denser, richer and more diverse than the macrobenthic community associated with the drift algae. The mollusks Anomalocardia flexuosa, Cerithium atratum, Ostrea sp., Tellina lineata and Divalinga quadrissulcata dominated the environment of seagrass. The greater structural complexity of drift algae provided a protected habitat more attractive for the detritivores Pagurus criniticornic, Cymadusa filosa and Batea catharinensis. Malacofauna associated with algae was not abundant, but an important record was a new occurrence of the invasive bivalve Myoforceps aristatus, drilling a shell of Ostrea sp. The relationships among the descriptors of the algae biomass were confirmed to most of the descriptors of its associated fauna. Linear relations between marine macrophytes and its total macrobenthic community followed the same pattern as drift algae linear relationships. Cluster and MDS analysis showed that the local macrobenthic communities are structured according to the taxa of the most dominant associated organisms influenced by the type of the basibiont vegetation (drift algae or seagrasses). The present study considers the importance of more protective measures at the place for the preservation and maintenance of Ilha do Japonês ecosystem, RJ, Brasil
62

Dioxins in the Marine Environment: Sources, Pathways and Fate of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Queensland, Australia

Gaus, Caroline, n/a January 2003 (has links)
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans(PCDFs) are two groups of lipophilic, persistent organic pollutants that are produced as by-products of various anthropogenic and industrial processes. Due to their relatively high toxic potencies and potential to bioaccumulate and biomagnify in organisms and through the food chain, the contemporary widespread distribution of these compounds is a concern to the health of the environment, wildlife and humans. This study determined the distribution, pathways and fate of PCDD/Fs in the coastal zone of Queensland, Australia, including the inshore marine environment of the World Heritage Great Barrier Reef Marine Park. This ecosystem supports unique fauna and flora such as the marine herbivorous mammal dugong (Dugong dugon) and its food source, seagrass. Elevated PCDD/Fs were present in soils and sediments along the entire Queensland coastline. Highest concentrations were found in soil from agricultural irrigation drains and in sediments near the mouths of major rivers. Elevated concentrations were associated with rural and urban types of land-use, and PCDD/Fs were present even in locations remote from anthropogenic activities. PCDD/F congener-specific analysis revealed an unusual profile in all samples, dominated by OCDD, with PCDFs present in low concentrations or below the limit of detection. Distinct HxCDD isomer patterns were observed, with the 1,2,3,7,8,9-HxCDD/1,2,3,4,6,7-HxCDD isomer pair dominating the 2,3,7,8-substituted HxCDDs. Similar congener and isomer characteristics were reported in sediments, soil and clay samples from other continents, but could not be attributed to any known source. Possible PCDD/F sources in Queensland were assessed using segmented estuarine sediment cores, for which radiochemical chronologies were established for each depth. Variations of PCDD/F concentrations in the sediment cores over several centuries of depositional history were relatively small. Elevated PCDD levels were still present in sediment slices from the early 17th century. PCDD/F homologue profiles in sediments deposited during the last 350 years were almost identical and correlated well to the characteristic profiles observed in surface sediments and soils from the entire Queensland coastline. These results suggested the presence of an unidentified PCDD source prior to the production of commercial organochlorine products. To investigate the formation of the unusual PCDD/F profiles, congener and isomer specific analyses were undertaken in soils, sediments and dated sediment cores. The results demonstrated that specific transformation processes in the environment have resulted in the observed PCDD profile characteristics. Dechlorination of OCDD was proposed to result in distinct 1,4-pattern characteristics (i.e. formation of isomers chlorinated in the 1,4,6,9-positions). Consequently, the environmental samples do not reflect the signatures of the original source. An alternative hypothesis to natural formation is discussed evaluating these processes and their implications for possible source contributions. This hypothesis explores the potential for the influence of anthropogenic PCDD precursors (e.g. pentachlorophenol) during the 1940s to 1990s. Transport of PCDD/Fs from the land-based source via impacted tributary river systems, and subsequent deposition processes are proposed to result in PCDD/F accumulation in the inshore marine ecosystem. The extent of the sediment PCDD/F contamination governs the concentrations in the extensive inshore marine seagrass meadows of Queensland. Partitioning processes in the sediment-seagrass system lead to increased toxic equivalency (TEQ) in the seagrass, compared to sediment.The relationship between contaminated inshore sediments, seagrass and dugongs were evaluated using six dugong habitat regions along the coastline. PCDD/F body burdens in dugongs are governed by sediment (and seagrass) PCDD/F concentrations in their habitat. High seagrass (and incidental sediment) ingestion rates, selective retention of toxicologically potent congeners and relatively low PCDD/F elimination capacities in dugongs are proposed to result in elevated PCDD/F concentrations and TEQ levels in adult animals. Transfer efficiencies of 4 and 27% of maternal TEQ levels to foetuses and calves (respectively) during gestation and lactation result in relatively high exposure potentials to offspring. Compared to no-observed-adverse-effect-levels in other mammals, and based on the results of this study, a tolerable daily intake (TDI) of 10-24 pg TEQ kg-1 day-1 was estimated for dugongs. The results of the present study found that dugongs from some regions along the coastline of Queensland exceed this TDI by up to 20 fold, suggesting that these populations may be at risk from PCDD/F contamination in their habitat. These results have important implications for the health of the environment, wildlife and humans and were used to develop a conceptual understanding of the sources, pathways and fate of dioxins in Queensland, Australia.
63

Humans and Seagrasses in East Africa : A social-ecological systems approach

de la Torre-Castro, Maricela January 2006 (has links)
The present study is one of the first attempts to analyze the societal importance of seagrasses (marine flowering plants) from a Natural Resource Management perspective, using a social-ecological systems (SES) approach. The interdisciplinary study takes place in East Africa (Western Indian Ocean, WIO) and includes in-depth studies in Chwaka Bay, Zanzibar, Tanzania. Natural and social sciences methods were used. The results are presented in six articles, showing that seagrass ecosystems are rich in seagrass species (13) and form an important part of the SES within the tropical seascape of the WIO. Seagrasses provide livelihoods opportunities and basic animal protein, in from of seagrass associated fish e.g. Siganidae and Scaridae. Research, management and education initiatives are, however, nearly non-existent. In Chwaka Bay, the goods and ecosystem services associated with the meadows and also appreciated by locals were fishing and collection grounds as well as substrate for seaweed cultivation. Seagrasses are used as medicines and fertilizers and associated with different beliefs and values. Dema (basket trap) fishery showed clear links to seagrass beds and provided the highest gross income per capita of all economic activities. All showing that the meadows provide social-ecological resilience. Drag-net fishery seems to damage the meadows. Two ecological studies show that artisanal seaweed farming of red algae, mainly done by women and pictured as sustainable in the WIO, has a thinning effect on seagrass beds, reduces associated macrofauna, affects sediments, changes fish catch composition and reduces diversity. Furthermore, it has a negative effect on i.a. women’s health. The two last papers are institutional analyses of the human-seagrass relationship. A broad approach was used to analyze regulative, normative and cultural-cognitive institutions. Cooperation and conflict take place between different institutions, interacting with their slow or fast moving characteristics, and are thus fundamental in directing the system into sustainable/unsustainable paths. Ecological knowledge was heterogeneous and situated. Due to the abundance of resources and high internal control, the SES seems to be entangled in a rigidity trap with the risk of falling into a poverty trap. Regulations were found insufficient to understand SES dynamics. “Well” designed organizational structures for management were found insufficient for “good” institutional performance. The dynamics between individuals embedded in different social and cultural structures showed to be crucial. Bwana Dikos, monitoring officials, placed in villages or landing sites in Zanzibar experienced four dilemmas – kinship, loyalty, poverty and control – which decrease efficiency and affect resilience. Mismatches between institutions themselves, and between institutions and cognitive capacities were identified. Some important practical implications are the need to include seagrass meadows in management and educational plans, addressing a seascape perspective, livelihood diversification, subsistence value, impacts, social-ecological resilience, and a broad institutional approach.
64

Comunidades macrofaunais bênticas associadas às algas de deriva e à grama marinha Halodule wrightii Ascherson na Ilha do Japonês, Cabo Frio, RJ / Macrobenthic communities associated with drift algae and with the seagrass Halodule wrightii Ascherson at Ilha do Japonês, Cabo Frio, RJ

Amanda Ferreira da Silva 04 September 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / As extensas pradarias submersas formadas pelas gramas marinhas são importantes habitats da costa, onde ocorrem interações ecológicas entre diversas espécies da vegetação subaquática, invertebrados bentônicos e peixes. As gramas marinhas e algas de deriva são conhecidas como macrófitas marinhas e, por ocuparem o mesmo tipo de substrato, são normalmente encontradas juntas, proporcionando oxigênio, alimento, proteção, abrigo além de sítios de reprodução e pastagem para os animais associados a essas pradarias. Amostras de algas de deriva e de H. wrightii foram coletadas, ao longo de transectos fixos de 50 m paralelos à Ilha do Japonês, a fim de analisar a existência de relações positivas entre as espécies de macrófitas marinhas e sua macrofauna associada, comparar as duas comunidades e avaliar a estruturação da comunidade macrofaunal bêntica do local. Os transectos foram alocados de acordo com a posição do banco de grama marinha. Observou-se que a densidade de eixos e a biomassa de H. wrightii não explicam a variação da biomassa, riqueza de espécies e diversidade (Índice de Simpson) das algas de deriva. A grande movimentação das algas de deriva ao longo do banco de grama marinha faz com que elas se homogeneízem e ocupem diferentes lugares ao acaso na pradaria, muitos desses locais com baixa biomassa de H. wrightii devido à grande variabilidade na distribuição dessa espécie no local de estudo. Os descritores ecológicos da grama marinha também não tiveram relações positivas com sua macrofauna bêntica associada. A comunidade macrofaunal associada às gramas marinhas foi mais densa, rica e diversa do que a comunidade macrofaunal associada às algas de deriva. Os moluscos Anomalocardia flexuosa, Cerithium atratum, Ostrea sp, Tellina lineata e Divalinga quadrissulcata dominaram o ambiente de gramas marinhas. A maior complexidade estrutural das algas de deriva forneceu um habitat protegido mais atrativo para os crustáceos como, Pagurus criniticornis, Cymadusa filosa e Batea catharinensis. A malacofauna associada às algas não foi abundante, mas um novo registro foi a ocorrência do bivalve invasor Lithopaga aristatus, perfurando uma concha de Ostrea sp. As relações entre os descritores da biomassa algal foram comprovadas para a maioria dos descritores de sua fauna associada. As relações das macrófitas marinhas com a macrofauna total associada seguiram o mesmo padrão das relações das algas de deriva. As análises de agrupamento e ordenação mostraram que as comunidades macrofaunais bênticas do local são estruturadas de acordo com os táxons dos organismos associados mais dominantes influenciados pelo tipo de vegetação basibionte (algas de deriva ou grama marinha). Destaca-se com o presente estudo a importância de medidas de maior proteção no local para a preservação e manutenção do ecossistema da Ilha do Japonês, RJ, Brasil / Extensive submerged meadows formed by seagrasses are an important habitat of the coast, where ecological interactions among different species of the submerged vegetation, benthic invertebrates and fish occur. The seagrasses and drift algae are known as marine macrophytes and, since they often can be found occupying the same substrate, they make a viable coexistence, providing oxygen, food, protection, shelter, besides breeding and grazing sites for the animals associated with these meadows. Samples of drift algae and H. wrightii were collected, along fixed 50 meter transects parallel to the Ilha do Japonês, so as to analyze the relationships between the species of marine macrophytes and the associated macrofauna, compare both communities and assess the structure of the local benthic macrofaunal community. Transects were allocated according to the position of the seagrass bed. It was found that shoot density and biomass of seagrasses did not explain the variation in drift algae biomass, species richness and diversity (Simpson index). The constant movement of the drift algae along the seagrass bed makes the algae homogenize and occupy different places by chance on the meadow, many of these places with low biomass of H. wrigthii, due to the high variability on the distribution of this species in the study area. The descriptors of the seagrassdid not have positive relations with its associated fauna either. Macrobenthos associated with the seagrasses was denser, richer and more diverse than the macrobenthic community associated with the drift algae. The mollusks Anomalocardia flexuosa, Cerithium atratum, Ostrea sp., Tellina lineata and Divalinga quadrissulcata dominated the environment of seagrass. The greater structural complexity of drift algae provided a protected habitat more attractive for the detritivores Pagurus criniticornic, Cymadusa filosa and Batea catharinensis. Malacofauna associated with algae was not abundant, but an important record was a new occurrence of the invasive bivalve Myoforceps aristatus, drilling a shell of Ostrea sp. The relationships among the descriptors of the algae biomass were confirmed to most of the descriptors of its associated fauna. Linear relations between marine macrophytes and its total macrobenthic community followed the same pattern as drift algae linear relationships. Cluster and MDS analysis showed that the local macrobenthic communities are structured according to the taxa of the most dominant associated organisms influenced by the type of the basibiont vegetation (drift algae or seagrasses). The present study considers the importance of more protective measures at the place for the preservation and maintenance of Ilha do Japonês ecosystem, RJ, Brasil
65

Mapping the Spatial-Temporal Variation in Ras Ghanada Seagrass Meadows and Sand Shoals between 1996, 2006 & 2012

Brookbank, Ryan 27 April 2017 (has links)
Seagrass meadows offshore Ras Ghanada, as elsewhere, are an important component to the ecosystem providing numerous benefits to both aquatic and human life. This work focused on mapping the spatial and temporal distribution of seagrass meadows offshore Ras Ghanada using aerial photography acquired in 1996 and high-resolution satellite images captured in 2006 and 2012. The movements of sand shoals were also tracked, so as to further explain the dynamics of this ecosystem, as it is the area between the shoal crests that hosts the best developed seagrass meadows. The natural limiting factor for seagrass on the Ras Ghanada coastal shelf seems to be the fact that they cannot inhabit the (mobile) crests of the sand shoals, but rather, are restricted to the (more stable) sands of the shoal troughs. In the considered time period, both sand shoals and seagrass meadows migrated predominantly in a southeastern direction. The changes of seagrass that occurred in this study occurred on a fairly rapid timescale, in such that they were able to come back when there was disturbance as long as they had available habitat to move into. Furthermore, although seagrass cover declined by 3.4% from 1996 – 2012, there was a greater increase than decline in the areal coverage of seagrass post-Khalifa port construction in 2010. If sediments offshore Ras Ghanada can remain stable and the waters are not polluted by further construction, seagrasses should continue to thrive in the future.
66

Rôles des facteurs environnementaux et des interactions biomorphodynamiques sur l’évolution spatio-temporelle des herbiers de zostères dans une lagune mésotidale. / Roles of environmental factors and biomorphodynamic interactions on spatio-temporal evolution of seagrass meadows in a mesotidal lagoon.

Cognat, Mathis 09 October 2019 (has links)
Les phanérogames marines constituent un compartiment biologique fondamental et fournissent de nombreux services écosystémiques. Comprendre leur évolution et les interactions avec leur environnement physique est un enjeu scientifique majeur à l’échelle mondiale. Dans le bassin d’Arcachon, des herbiers de Zostera noltei (le plus grand d’Europe) et de Zostera marina ont vu leur surfaces régresser fortement ces deux dernières décennies. La régression s’est accompagnée d’une augmentation des concentrations en sédiments en suspension et de modifications morphologiques significatives. Dans ce contexte, et à travers cet exemple régional, les objectifs de la thèse sont de mieux comprendre les causes physiques de la régression des herbiers de zostères et de démêler et de quantifier les conséquences physiques de la régression et les effets de rétrocontrôle.Un monitoring exhaustif des herbiers (suivi des paramètres biologiques, chimiques et physiques sur neuf sites durant une année) a montré d’une part l’extrême variabilité des conditions environnementales auxquelles sont soumis les herbiers de zostères naines du Bassin et d’autre part d’importantes différences démographiques, morphologiques et biochimiques entre les plantes des différents sites. Certaines de ces différences reflètent leur capacité d’adaptation à l’intensité d’un forçage. Un modèle logistique croissance a montré qu’outre la lumière, les paramètres principaux qui contrôlent le développement de Z. noltei à l’échelle du Bassin sont les forçages hydrodynamiques. Toutefois à l’échelle locale, d’autres facteurs tels que la teneur en matière organique ou la microtopographie s’avèrent prépondérants.Dans un second temps, une analyse associant des données historiques et des scénarios de modélisation hydrodynamique a montré que la profondeur maximale colonisée par les deux espèces de zostères avait fortement diminué entre 1989 et 2016, suggérant un effet du manque de lumière sur l’évolution de la distribution des deux espèces. Par ailleurs, il s’est avéré que la régression des zostères naines avait débuté au niveau des zones les plus pentues des estrans, qui correspondent aux rebords des chenaux et sont donc soumises aux courants les plus intenses, suggérant là encore un effet de l’intensité des courants sur la distribution de Z. noltei.Les résultats des simulations numériques ont montré que la régression des deux espèces induit une augmentation importante de l’énergie hydrodynamique, non seulement localement dans les zones où les herbiers ont régressé, mais également à distance, au niveau des chenaux principaux et jusqu’à près de l’embouchure.De plus, les effets hydrodynamiques induits par la régression initiale de Z. marina (1989-2007) ont contribué à la première phase du déclin des herbiers de Z. noltei. Ces résultats confirment en partie l’hypothèse que des processus de rétrocontrôle entre hydrodynamique et régression des herbiers de zostères sont intervenus au cours de la première phase du déclin des zostères. Par ailleurs, les conséquences hydrodynamiques directes de la première phase de régression des deux espèces (1989-2007) expliquent plus de 75 % de la seconde phase de régression de Z. noltei (2007-2012). Ces résultats confirment pleinement l’existence des processus de rétrocontrôle et met en évidence leur rôle prépondérant sur la dynamique des herbiers de Z. noltei.En ce qui concerne Z. marina, il apparaît enfin que les conditions actuelles ne permettent pas sa reconquête des zones d’où elle a disparu. Au contraire, du fait de sa position intertidale la rendant moins sensible aux fortes turbidités, Z. noltei pourrait recoloniser un certain nombre d’estrans qui leur sont favorables sur le plan hydrodynamique. Ce processus de recolonisation, conduisant à une réduction de l’énergie hydrodynamique et à l’amélioration locale des conditions lumineuses, pourrait s’auto-amplifier de proche en proche et favoriser la reprise de Z. marina dans les chenaux. / Seagrass meadows are a fundamental biological component and provide many ecosystem services in coastal areas. Understanding their evolution and interactions with their physical environment is a major scientific issue. In Arcachon Bay, seagrass meadows of Zostera notlei (the largest in Europe) and Zostera marina have sharply regressed over the last two decades. In the meantime, an increase in suspended sediment concentrations and significant morphological changes were observed. Based on this regional case study, the objectives of this thesis are to better underestand the physical causes of seagrass bed regression, and also to quantify the physical consequences of the egression and possible feedback processes.An extensive monitoring of biological, chemical and physical parameters at nine sites during one year showed the extreme variability of the environmental conditions to which the Z. noltei beds are subject in Arcachon Bay, the important demographic, morphological and biochemical differences between plants of different sites. Some of these differences reflect their ability to adapt to the intensity of a forcing. A logistic growth model has shown that in addition to light, the main parameters that control the development of Z. noltei at the scale of the bay are hydrodynamic forcing. However, at the local scale, other factors such as organic matter content or microtopography may be predominant.In a second step, an analysis combining historical data and hydrodynamic modelling scenarios showed that the maximum depth colonized by the two species of seagrass strongly declined between 1989 and 2016. This analysis suggests that lack of light had an effect on the evolution of the distribution of the two species. In addition, it was found that the regression of Z. noltei began on the steepest areas of the tidal flat, which correspond to the edges of the channels and were therefore subject to the most intense currents, suggesting again an effect of intensity of currents on the distribution of Z. noltei.The results of numerical simulations showed that the regression of both species induces a significant increase in hydrodynamic energy, not only locally in areas where the seagrass have declined, but also remotely, at the level of main channels and up to near the mouth.In addition, the hydrodynamic effects induced by the initial regression of Z. Marina (1989-2007) contributed to the first phase of the decline of Z. noltei meadows. These results partially confirm the hypothesis that feedback processes between hydrodynamics and regression of seagrass beds occurred during the first stage of seagrass decline. Furthermore, the direct hydrodynamic consequences of the first regression phase of the two species (1989-2007) accounted for more than 75% of the second regression phase of Z. noltei (2007-2012). These results fully confirm the existence of feedback processes and highlight their predominant role in the dynamics of Z. noltei meadows.As far as Z. marina is concerned, it finally appears that the current conditions do not allow colonization of the areas from which it disappeared. On the contrary, due to its intertidal position making it less susceptible to high turbidity, Z. noltei could recolonize some tidal flats that present favourable hydrodynamic conditions. This process of recolonization, leading to a reduction of the hydrodynamic energy and to the local improvement of the light conditions, could self-amplify by adjaceting to each other and then promote the recovery of Z. marina in the channels.

Page generated in 0.1154 seconds