11 |
Procesamiento de señales para mejorar la eficiencia energética y la seguridad en internet de las cosasFernández, Santiago 09 June 2023 (has links)
En la historia de la humanidad las comunicaciones siempre han sido de vital
importancia, pero es en estos últimos años que la necesidad de la hiperconectividad se ha vuelo una realidad. Diversos dispositivos, ya sean electrónicos o no,
cuentan con elementos que les permiten conectarse a internet y ser monitoreados.
Es a partir de estos conceptos que nace el paradigma de Internet de las Cosas
(Internet of Things, IoT). Esta intrincada red de comunicaciones plantea varios
desafíos en términos de conectividad y alimentación, y más aún, cuando se espera
que el número de estos dispositivos llegue a los casi 100 mil millones en un futuro
muy cercano.
Considerando este enorme y acelerado incremento del número de dispositivos
de IoT se hace necesaria la implementación de técnicas eficientes para proveerlos
de energía para su funcionamiento. Una manera alternativa al uso de las clásicas
baterías, tan contaminantes para el medio ambiente, es por medio de la cosecha de
energía a través de señales de radio frecuencia (RF). En este sentido, y tratándose de señales RF, pueden aprovecharse las mismas tanto para la transferencia
de energía como para la de información. Para poder realizar simultáneamente
esta transferencia de energía e información es necesario aplicar ciertas técnicas
que permitan separar estos dos tipos de señales, tanto en la transmisión como
en la recepción. En la práctica, esta transferencia de energía no es un asunto
trivial, debido a las limitaciones que existen en la transmisión y recepción de
este tipo de señales, como así también a las grandes pérdidas que provocan los
canales inalámbricos. Es por esto que es necesario proveer técnicas que mejoren
la eficiencia desde el punto de vista tanto del transmisor como del cosechador
de energía, localizado en el receptor. Por otro lado, desde el punto de vista de
las pérdidas ocasionadas por el canal, pueden aprovecharse técnicas nuevas que
mitiguen esta problemática, extendiendo el rango de trabajo de los sistemas.
Como requisito adicional en el camino hacia las tecnologías de Sexta Generación (6G), la provisión de seguridad es una preocupación importante en el
contexto de las futuras redes inalámbricas, y aquellas que operan bajo el paradigma
de la cosecha de energía no son una excepción. La inherente naturaleza de las
comunicaciones inalámbricas de esparcir la señal en todas direcciones (broadcast)
las hace vulnerables a amenazas de agentes externos capaces de robar información. Pero, en el contexto de IoT donde los nodos de bajo costo/complejidad,
con limitaciones estrictas de energía y recursos, son los componentes principales, las técnicas tradicionales para la transmisión segura de información no son
compatibles. Por esto, es necesario proveer técnicas que no necesiten de un costo
computacional tan elevado y puedan ser aprovechadas por cualquier dispositivo. / In the history of mankind, communications have always been of vital importance, but it is in recent years that the need for hyperconnectivity has become
a reality. Various devices, whether electronic or not, have elements that allow
them to connect to the Internet and be monitored. It is from these concepts that
the Internet of Things (IoT) paradigm is born. This intricate communications
network poses several challenges in terms of connectivity and power, and even
more so, when the number of these devices is expected to reach almost 100 billion
in the very near future.
Considering this huge and accelerated increase in the number of IoT devices, it becomes necessary to implement efficient techniques to provide them
with power for their operation. An alternative to the use of classic batteries, so
polluting for the environment, is by means of energy harvesting through radio
frequency (RF) signals. In this sense, RF signals can be used for both energy and
information transfer. In order to carry out this energy and information transfer
simultaneously, it is necessary to apply certain techniques that allow separating
these two types of signals, both in transmission and reception. In practice, this
energy transfer is not a trivial matter, due to the limitations that exist in the
transmission and reception of this type of signals, as well as the high losses caused by wireless channels. This is why it is necessary to provide techniques that
improve efficiency from the point of view of both the transmitter and the energy
harvester, located at the receiver. On the other hand, from the point of view of
the losses caused by the channel, new techniques can be used to mitigate this
problem, extending the working range of the systems.
As an additional requirement on the road to Sixth Generation (6G) technologies, the provision of security is a major concern in the context of future
wireless networks, and those operating under the energy harvesting paradigm
are no exception. The inherent nature of wireless communications to spread the
signal in all directions (broadcast) makes them vulnerable to threats from external agents capable of stealing information. But, in the context of IoT where
low-cost/complexity nodes, with strict energy and resource constraints, are the
main components, traditional techniques for secure information transmission are
not compatible. Therefore, it is necessary to provide techniques that do not require such a high computational cost and can be exploited by any device.
|
12 |
Sécurité pour les réseaux sans fil / Security for wireless communicationsKamel, Sarah 10 March 2017 (has links)
Aujourd’hui, le renforcement de la sécurité des systèmes de communications devient une nécessité, par anticipation du développement des ordinateurs quantiques et des nouvelles attaques qui en découleront. Cette thèse explore deux techniques complémentaires permettant d’assurer la confidentialité des données transmises sur des liens sans-fils. Dans la première partie de ce travail, nous nous intéressons au schéma de cryptographie à clé publique basée sur des réseaux de points, qui représente une des techniques les plus prometteuses pour la cryptographie post-quantique. En particulier, nous considérons le cryptosystème Goldreich-Goldwasser-Halevi (GGH), pour lequel nous proposons un nouveau schéma utilisant les GLD. Dans la seconde partie de ce travail, nous étudions la sécurité des canaux de diffusion multi-utilisateur, ayant accès à des mémoires de caches, en présence d'un espion. Nous considérons deux contraintes de sécurité: la contrainte de sécurité individuelle et la contrainte de sécurité jointe. Nous dérivons des bornes supérieure et inférieure pour le compromis sécurisé capacité-mémoire en considérant différentes distributions de cache. Afin d'obtenir la borne inférieure, nous proposons plusieurs schémas de codage combinant codage wiretap, codage basé sur la superposition et codage piggyback. Nous prouvons qu'il est plus avantageux d'allouer la mémoire de cache aux récepteurs les plus faibles. / Today, there is a real need to strengthen the communication security to anticipate the development of quantum computing and the eventual attacks arising from it. This work explores two complementary techniques that provide confidentiality to data transmitted over wireless networks. In the first part, we focus on lattice-based public-key cryptography, which is one of the most promising techniques for the post-quantum cryptography systems. In particular, we focus on the Goldreich-Goldwasser-Halevi (GGH) cryptosystem, for which we propose a new scheme using GLD lattices. In the second part of this work, we study the security of multi-user cache-aided wiretap broadcast channels (BCs) against an external eavesdropper under two secrecy constraints: individual secrecy constraint and joint secrecy constraint. We compute upper and lower bounds on secure capacity-memory tradeoff considering different cache distributions. To obtain the lower bound, we propose different coding schemes that combine wiretap coding, superposition coding and piggyback coding. We prove that allocation of the cache memory to the weaker receivers is the most beneficial cache distribution scenario.
|
13 |
Physical Layer Security with Unmanned Aerial Vehicles for Advanced Wireless NetworksAbdalla, Aly Sabri 08 August 2023 (has links) (PDF)
Unmanned aerial vehicles (UAVs) are emerging as enablers for supporting many applications and services, such as precision agriculture, search and rescue, temporary network deployment, coverage extension, and security. UAVs are being considered for integration into emerging wireless networks as aerial users, aerial relays (ARs), or aerial base stations (ABSs). This dissertation proposes employing UAVs to contribute to physical layer techniques that enhance the security performance of advanced wireless networks and services in terms of availability, resilience, and confidentiality. The focus is on securing terrestrial cellular communications against eavesdropping with a cellular-connected UAV that is dispatched as an AR or ABS. The research develops mathematical tools and applies machine learning algorithms to jointly optimize UAV trajectory and advanced communication parameters for improving the secrecy rate of wireless links, covering various communication scenarios: static and mobile users, single and multiple users, and single and multiple eavesdroppers with and without knowledge of the location of attackers and their channel state information. The analysis is based on established air-to-ground and air-to-air channel models for single and multiple antenna systems while taking into consideration the limited on-board energy resources of cellular-connected UAVs. Simulation results show fast algorithm convergence and significant improvements in terms of channel secrecy capacity that can be achieved when UAVs assist terrestrial cellular networks as proposed here over state-of-the-art solutions. In addition, numerical results demonstrate that the proposed methods scale well with the number of users to be served and with different eavesdropping distributions. The presented solutions are wireless protocol agnostic, can complement traditional security principles, and can be extended to address other communication security and performance needs.
|
14 |
Hardware-Aided Approaches for Unconditional Confidentiality and AuthenticationBendary, Ahmed January 2021 (has links)
No description available.
|
15 |
Capacidade quântica de sigilo erro-zero e informação acessível erro-zero de fontes quânticas. / Quantum quantum-error-zero capability and accessible error-zero information from quantum sources.COSTA, Elloá Barreto Guedes da. 01 October 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-10-01T14:15:29Z
No. of bitstreams: 1
ELLOÁ BARRETO GUEDES COSTA - TESE PPGCC 2013..pdf: 53314941 bytes, checksum: 3758326a173b3852e098b78e3e03a1fc (MD5) / Made available in DSpace on 2018-10-01T14:15:29Z (GMT). No. of bitstreams: 1
ELLOÁ BARRETO GUEDES COSTA - TESE PPGCC 2013..pdf: 53314941 bytes, checksum: 3758326a173b3852e098b78e3e03a1fc (MD5)
Previous issue date: 2013-11-13 / CNPq / A Teoria da Informação Quântica é uma área de pesquisa a qual considera o
estudo dos limites máximos possíveis para o processamento e transmissão da informação, considerando que esta última encontra-se representada de acordo com as leis da Mecânica Quântica. Uma das maneiras de contribuir com esta área de pesquisa
é no desenvolvimento de contrapartidas quânticas para os conceitos da Teoria da
Informação Clássica. Graças a esta abordagem é que foi proposta a Teoria da Informação
Quântica Erro-Zero, a qual considera o uso e as condições para que canais quânticos ruidosos possam transmitir informação clássica sem erros de decodificação. Apesar da proposição desta teoria e dos progressos recentes, foi identificado que o conhecimento das potencialidades, limitações e aplicações desta teoria ainda é incipiente. Na tentativa de minimizar este problema, esta tese apresenta dois novos conceitos ligados à Teoria da Informação Quântica Erro-Zero: (i) a capacidade quântica de sigilo erro-zero; e a (ii) informação acessível erro-zero de fontes quânticas. Em relação à primeira contribuição, tem-se o estabelecimento das condições necessárias para enviar informação por canais quânticos ruidosos sem que haja erros de decodificação e com sigilo absoluto, identificando uma nova capacidade de canais quânticos, estabelecendo a relação desta capacidade com a Teoria dos Grafos e identificando as situações em que esta possui caracterização de letra isolada. A segunda contribuição trata da proposição de uma medida de informação sobre fontes quânticas, a qual mensura o potencial de decodificar, sem erros, estados quânticos emitidos por estas fontes. Obter esta medida é um problema análogo ao de calcular a capacidade erro-zero de canais clássicos equivalentes e não há medida equivalente na Teoria da Informação Erro-Zero Clássica. Os conceitos propostos colaboram para o desenvolvimento da Teoria da Informação Quântica Erro-Zero em termos teóricos e práticos, uma vez que é possível considerar implementações de ambas contribuições com tecnologia existente atualmente. Além disto, intersecções da Teoria da Informação Quântica Erro-Zero junto à Criptografia, Teoria dos Grafos e Ciência
da Computação são identificadas. O estabelecimento de tais contribuições colabora
diretamente para a resolução de um dos desafios da Teoria da Informação Quântica,
o qual trata da determinação de limites para a classe de tarefas de processamento
de informação que são possíveis considerando a utilização da Mecânica Quântica. / Quantum Information Theory is a research area that investigates the limits of information processing and transmission considering the laws of Quantum Mechanics. The translation of concepts from Classical Information Theory is a widely known approach to contribute to Quantum Information Theory. Thanks to that, the Quantum Zero-Error Information Theory was proposed. This theory investigates the use and the conditions for classical information exchange through noisy quantum channels without decoding errors. Despite the recent developments, it wasidentified that the knowledge about its potentialities, limitations and applications is still incipient. In the attempt to minimize this problem, this thesis presents two new concepts related to the Quantum Zero-Error Information Theory: (i) the quantum
zero-error secrecy capacity; and the (ii) zero-error quantum accessible information.
Regarding the first contribution, there is the establishment of the required conditions
to send information through quantum channels without decoding errors and with perfect secrecy. This proposal identifies a new capacity of quantum channels, enlightens its relation with Graph Theory, and shows the situations where this capacity has single-letter characterization. Regarding the second contribution, there is the proposal of a quantum information measurement which quantifies the error-free decoding ability of a quantum source. Obtaining such measurement is a problem equivalent to the one of determining the zero-erro capacity of an equivalent classical channel and for which there is no counterpart in Classical Zero-Error Information Theory. The concepts proposed collaborate to Quantum Zero-Error Information Theory in theoretical and practical ways, since it is possible to implement both of them using current technology. Moreover, intersections with Cryptography, Graph Theory and Computer Science were identified. These concepts contribute straightforwardly to the resolution of a challenge of Quantum Information Theory which is the determination of the limits for the tasks of information processing that can be
accomplished considering the use of Quantum Mechanics.
|
16 |
Evaluation of industrial wireless communications systems’ securitySoderi, S. (Simone) 07 June 2016 (has links)
Abstract
The worldwide success of wireless communications was originally fueled by the possibility to replace existing cables with wireless solutions. This phenomenon imposed the development of security engineering as a multidisciplinary field. Although wireless solutions can reduce installation costs and allow introducing new services, the end–users expect it to have the same level of security as they would normally have with wired solutions. Secure communications is an important part of the overall security of industrial wireless communications systems (IWCS).
The aim of this thesis is to develop new security engineering methodologies for IWCS. The author develops countermeasures against confidentiality and integrity attacks and carries out a security analysis covering the protocol, electromagnetic and physical layer. In the first part of the thesis, Host Identity Protocol (HIP) is utilized to secure communication in an intra–vehicular network. Simulations and measurement campaigns are also conducted to evaluate the impact of the overhead on security in a tunnel, considering line–of–sight (LOS) and non–LOS (NLOS) scenarios.
Electromagnetic analysis (EMA) is an important step in the development of safety–related systems. Today, the increasing usage of smaller integrated circuit also increases the susceptibility to electromagnetic (EM) interference. From near–field (NF) to far–field (FF) transformation, a method for the evaluation of the emissions leakage is investigated. The virtual EM (VEM) interface of the device–under–test (DUT) is studied, and it is described how an adversary can exploit it for denial of service (DoS) attacks. An effective jamming attack model is studied, and the theoretical calculations are validated with experiment–based results.
Finally, focusing attention on physical layer security, two algorithms are developed. Active radio frequency fingerprinting (RFF) implements the exchange of a public key during the setup of secure communication. Afterwards, utilizing a jamming receiver in conjunction with the spread spectrum (SS) watermarking technique, the watermark–based blind physical layer security (WBPLSec) protocol is presented. The analysis and results indicate how the WBPLSec seems to be a valuable technique for deploying physical layer security by creating a secure region around the receiver. / Tiivistelmä
Langattoman tietoliikenteen maailmanlaajuista suosiota kiihdytti alun perin mahdollisuus korvata tietoliikennejärjestelmissä käytetyt kaapelit langattomilla ratkaisuilla. Ilmiö lisäsi myös tarvetta kehittää alan turvatekniikkaa monialaisen tutkimuksen pohjalta. Vaikka langattomat ratkaisut merkitsevät pienempiä asennuskustannuksia ja tarjoavat mahdollisuuksia luoda uudenlaisia palveluja, järjestelmien loppukäyttäjät edellyttävät kuitenkin niiden turvallisuuden olevan vastaavalla tasolla kuin langallisissa verkoissa. Myös teollisuuden langattomien tietoliikennejärjestelmen turvallisuus riippuu pitkälti viestintäkanavien turvallisuudesta.
Väitöksen tavoitteena on kehittää uusia menetelmiä, joilla teollisuuden langattomat tietoliikennejärjestelmät voitaisiin turvata. Väitöksessä kehitetään toimenpiteitä tietoliikennejärjestelmien luottamuksellisuuteen ja koskemattomuuteen kohdistuvia hyökkäyksiä vastaan ja toteutetaan turvallisuusarviointi, joka kattaa järjestelmän protokollakerroksen sekä sähkömagneettisen ja fyysisen kerroksen. Väitöksen ensimmäisessä osassa hyödynnetään HIP–protokollaa (Host Identity Protocol) liikennevälineen sisäisen tietoliikennejärjestelmän turvallisuuden varmistamisessa. Lisäksi siinä kuvataan simulaatiot ja mittaushankkeet, joiden tavoitteena on arvioida käytetyn protokollan turvallisuusvaikutuksia esteettömän (line–of–sight, LOS) ja esteellisen (non–line–of–sight, NLOS) näköyhteyden tapauksissa.
Sähkömagneettinen analyysi on tärkeä vaihe turvajärjestelmien kehitysprosessissa. Järjestelmissä käytetään yhä enemmän pieniä integroituja piirejä, mikä voi myös altistaa ne sähkömagneettisille (electromagnetic, EM) häiriöille. Väitöksessä tutkitaan lähikenttä–kaukokenttä -muunnokseen perustuvan arviointimenetelmän avulla sähkömagneettisen vuotosäteilyn tasoa. Lisäksi perehdytään testattavan laitteen (device under test, DUT) virtuaaliseen EM–liitäntään ja kuvataan, miten vastaavaa liitäntää voidaan hyödyntää palvelunestohyökkäyksissä. Väitöksessä tutkitaan myös tehokasta häirintämallia ja validoidaan teoreettisten laskelmien tulokset kokeellisesti.
Lopuksi väitöksessä keskitytään tietoliikennejärjestelmän fyysisen kerroksen turvallisuuteen ja kehitetään kaksi algoritmia. Aktiivisen radiotaajuisen tunnistusmenetelmän avulla voidaan vaihtaa julkisia avaimia turvallista tietoliikenneyhteyttä muodostettaessa. Lisäksi esitellään vesileimausmenetelmään perustuva fyysisen kerroksen salausmenetelmä, WBPLSec. WBPLSec luo vastaanottimen ympärille suoja–alueen, minkä ansiosta se vaikuttaa analyysin ja tutkimustulosten perusteella olevan tehokas menetelmä toteuttaa fyysisen kerroksen suojaus.
|
Page generated in 0.0695 seconds