• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 315
  • 147
  • 93
  • 41
  • 16
  • 16
  • 13
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • Tagged with
  • 807
  • 213
  • 180
  • 157
  • 134
  • 118
  • 117
  • 103
  • 86
  • 85
  • 66
  • 64
  • 63
  • 54
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

ON TRANSLOCATOR PROTEIN EXPORT VIA THE PSEUDOMONAS AERUGINOSA TYPE III SECRETION SYSTEM

Tomalka, Amanda Grace 21 February 2014 (has links)
No description available.
422

INVESTIGATION OF THE ROLE OF ANNEXIN V IN MOUSE PLACENTA: DEVELOPMENT OF APPROACHES TO EXPLORE THE THERAPEUTIC POTENTIAL OF THE PROTIEN

Wang, Xiuqiong January 2000 (has links)
No description available.
423

SORTING AND SECRETION OF SURFACTANT PROTEIN C

Johnson Conkright, Juliana j. 11 October 2001 (has links)
No description available.
424

MOLECULAR AND PHYSIOLOGICAL STUDIES OF ELECTROLYTE AND FLUID TRANSPORT PERTURBATIONS IN NKCC1 AND NHE3 DEFICIENT MICE

Flagella, Michael 11 October 2001 (has links)
No description available.
425

ROLES OF TYPE IV SECRETION EFFECTOR ECH0825 IN EHRLICHIA CHAFFEENSIS INFECTION

Liu, Hongyan January 2013 (has links)
No description available.
426

INSIGHTS TO THE MECHANISM OF TYPE 2 DIABETES REMISSION FOLLOWING ROUX-EN-Y GASTRIC BYPASS SURGERY

Mosinski, J. David 01 June 2016 (has links)
No description available.
427

Iron- and Temperature-Dependent Regulation of Shigella Dysenteriae Virulence-Associated Factors

Wei, Yahan January 2016 (has links)
No description available.
428

Purinergic neurogenic intestinal mucosal secretion

Hu, Hong-Zhen 22 December 2004 (has links)
No description available.
429

Studies on the Interaction and Organization of Bacterial Proteins on Membranes

Brena, Mariana 02 July 2019 (has links)
Bacteria have developed various means of secreting proteins that can enter the host cell membrane. In this work I focus on two systems: cholesterol-dependent cytolysins and Type III Secretion. Cholesterol is a molecule that is critical for physiological processes and cell membrane function. Not only can improper regulation lead to disease, but also the role cholesterol plays in cell function indicates it is an important molecule to understand. In response to this need, probes have been developed that detect cholesterol molecules in membranes. However, it has been recently shown that there is a need for probes that only respond to cholesterol that is accessible at the membrane surface. Perfringolysin O (PFO) is a toxin secreted by Clostridium perfringens that has been developed into a probe capable of detecting accessible cholesterol. Recently, researchers have been expanding the capabilities of this probe by substituting residues, modifying residues, truncating the probe, or a combination of the three. However, lack of characterization of these new probes has led to controversial results. To understand the role of a conserved Cys residue, here we perform cholesterol binding assays and measure the pore formation activity of a Cys modified PFO derivative. The Type III Secretion (T3S) system is a syringe-like apparatus used by various pathogens to inject effector proteins into target cells. The apparatus spans both the inner and outer bacterial membrane, extending to make contact with the host cell where it forms a pore known as the translocon. In Pseudomonas aeruginosa, the translocon is made up of two proteins, PopB and PopD. While recent advances have been made on the structure of the needle and injectisome, information on the translocon remains sparse. In this work, the P. aeruginosa T3S translocon is analyzed using both in vivo and in vitro methods.
430

STRUCTURAL AND BIOCHEMICAL CHARACTERIZATION OF THE CHLAMYDIA PNEUMONIAE TYPE III SECRETION SYSTEM

Stone, Christopher B. 04 1900 (has links)
<p><em>Chlamydia pneumoniae</em> is a Gram-negative intracellular pathogen that uses type III secretion to invade and survive within eukaryotic cells. The T3SS secretes specific effector proteins during the infection process to facilitate immune evasion and nutrient acquisition. Unfortunately, the genetic intractability and difficult culturing conditions of Chlamydiae has inhibited progress in the chlamydial T3S field. This thesis characterizes fundamental aspects of the <em>C. pneumoniae </em>injectisome such as the ATPase, the inner-membrane export apparatus, and a specific effector protein Cpn0803. Initially, we explored whether <em>C. pneumoniae</em> encodes a functional T3S ATPase and if it associates with other T3S components. We found that CdsN has enzymatic activity consistent with other Gram-negative T3S ATPases, and that CdsN associates with inner-membrane and soluble components such as CdsD, CdsQ, CopN and CdsL. We also found that CdsN has binding surfaces for either structural or putative effector / chaperone T3S proteins. Next, we explored the putative flagellar genes, which were of interest since <em>Chlamydia</em> is a non-motile bacteria that lacks flagellum. We found that the flagellar proteins associate with the T3S apparatus, suggesting that they play a role in T3S during the life-cycle. We extended this observation to show that CdsL, a T3S component, down-regulates both CdsN and FliI enzymatic activity, suggesting that the flagellar proteins are involved in T3S. Furthermore, we characterized Cpn0803 as an exemplary effector, which associates with both CdsN and FliI. We found that Cpn0803 is secreted into host cells upon<em> Chlamydia</em> infection. Cpn0803 was thought to be the T3S needle-tip protein; however, the crystal structure does not support this hypothesis. Presently, the actual role of Cpn0803 in the T3S apparatus remains unknown. Overall, our data suggests that CdsN and FliI both function during the chlamydial life-cycle in the T3S process, possibly coordinating effector proteins (such as Cpn0803) for secretion into host cells.</p> / Doctor of Philosophy (PhD)

Page generated in 0.0683 seconds