• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Classifying seven dimensional manifolds of fixed cohomology type

Montagantirud, Pongdate 21 March 2012 (has links)
Finding new examples of compact simply connected spaces admitting a Riemannian metric of positive sectional curvature is a fundamental problem in differential geometry. Likewise, studying topological properties of families of manifolds is very interesting to topologists. The Eschenburg spaces combine both of those interests: they are positively curved Riemannian manifolds whose topological classification is known. There is a second family consisting of the Witten manifolds: they are the examples of compact simply connected spaces admitting Einstein metrics of positive Ricci curvature. Thirdly, there is a notion of generalized Witten manifold as well. Topologically, all three families share the same cohomology ring. This common ring structure motivates the definition of a manifold of type r, where r is the order of the fourth cohomology group. In 1991, M. Kreck and S. Stolz classified manifolds M of type r up to homeomorphism and dieomorphism using invariants s̄[subscript i](M) and s[subscript i](M), for i = 1, 2, 3. This gave rise to many new examples of nondieomorphic but homeomorphic manifolds. In this dissertation, new versions of the homeomorphism and dieomorphism classification of manifolds of type r are proven. In particular, we can replace s̄₁ and s̄₃ by the first Pontrjagin class and the self-linking number in the homeomorphism classification of spin manifolds of type r. As the formulas of the two latter invariants are in general much easier to compute, this simplifies the classification of these manifolds up to homeomorphism significantly. / Graduation date: 2012
2

Primeiro autovalor nÃo nulo de uma hipersuperfÃcie mÃnima na esfera unitÃria / First nonzero eigenvalue of a minimal hypersuperface in the unit sphere

Henrique Blanco da Silva 23 August 2013 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / O objetivo deste trabalho à estudarmos o primeiro autovalor nÃo nulo do operador Laplaciano de hipersuperfÃcies compactas com curvatura mÃdia constante imersas na esfera unitÃria contida no espaÃo Euclidiano. Vamos mostrar que para o caso mÃnimo, teremos uma de trÃs possÃveis estimativas para este primeiro autovalor e, como consequÃncia de um possÃvel autovalor, esta hipersuperfÃcie serà isomÃtrica à uma esfera. / The aim of this work is we study the first nonzero eigenvalue of the Laplacian operator compact hypersurfaces with constant mean curvature immersed in the unit sphere contained in Euclidean space. We will show that for the minimal case, we will have one of three possible estimates for the first eigenvalue and, as a consequence of a possible eigenvalue, this hypersurface will be isometric to sphere.
3

Sobre subvariedades totalmente reais / On totally real submanifolds

Josà Loester Sà Carneiro 05 July 2011 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Subvariedades analÃticas complexas e totalmente reais sÃo duas classes tÃpicas dentre todas as subvariedades de uma variedade quase Hermitiana. Neste trabalho procuramos dar algumas caracterizaÃÃes de subvariedades totalmente reais. AlÃm disso algumas classificaÃÃes de subvariedades totalmente reais em formas espaciais complexas sÃo obtidas. / Complex analytic submanifolds and totally real submanifolds are two typical classes among all submanifolds of an almost Hermitian manifolds. In this work, some characterizations of totally real submanifolds are given. Moreover some classifications of totally real submanifolds in complex space forms are obtained.
4

Produtos torcidos e variedades conformemente planas / Warped products and conformally flat manifolds.

Bonfim, Paula Gonçalves Correia 25 February 2015 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-15T14:04:40Z No. of bitstreams: 2 Dissertação - Paula Gonçalves Correia Bonfim - 2015.pdf: 761299 bytes, checksum: 88e01b4ea63a9e5d1b49cc325edca279 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-15T14:10:40Z (GMT) No. of bitstreams: 2 Dissertação - Paula Gonçalves Correia Bonfim - 2015.pdf: 761299 bytes, checksum: 88e01b4ea63a9e5d1b49cc325edca279 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-05-15T14:10:40Z (GMT). No. of bitstreams: 2 Dissertação - Paula Gonçalves Correia Bonfim - 2015.pdf: 761299 bytes, checksum: 88e01b4ea63a9e5d1b49cc325edca279 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-02-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we propose to present concepts and results that guide us to construction of examples of complete locally conformally flat manifolds of nonpositive curvature obtained by Brozos-Vázquez, García-Río e Vázquez-Lorenzo in [4]. For this, was made a study of product manifolds equipped with a multiply warped metric. / Neste trabalho nos propomos a apresentar conceitos e resultados que nos guiem para a construção de exemplos de variedades completas localmente conformemente planas de curvatura seccional não positiva, obtidos por Brozos-Vázquez, García-Río e Vázquez- Lorenzo em [4]. Para isso, foi feito um estudo sobre variedades produto equipadas com uma métrica torcida múltipla.
5

The differential geometry of the fibres of an almost contract metric submersion

Tshikunguila, Tshikuna-Matamba 10 1900 (has links)
Almost contact metric submersions constitute a class of Riemannian submersions whose total space is an almost contact metric manifold. Regarding the base space, two types are studied. Submersions of type I are those whose base space is an almost contact metric manifold while, when the base space is an almost Hermitian manifold, then the submersion is said to be of type II. After recalling the known notions and fundamental properties to be used in the sequel, relationships between the structure of the fibres with that of the total space are established. When the fibres are almost Hermitian manifolds, which occur in the case of a type I submersions, we determine the classes of submersions whose fibres are Kählerian, almost Kählerian, nearly Kählerian, quasi Kählerian, locally conformal (almost) Kählerian, Gi-manifolds and so on. This can be viewed as a classification of submersions of type I based upon the structure of the fibres. Concerning the fibres of a type II submersions, which are almost contact metric manifolds, we discuss how they inherit the structure of the total space. Considering the curvature property on the total space, we determine its corresponding on the fibres in the case of a type I submersions. For instance, the cosymplectic curvature property on the total space corresponds to the Kähler identity on the fibres. Similar results are obtained for Sasakian and Kenmotsu curvature properties. After producing the classes of submersions with minimal, superminimal or umbilical fibres, their impacts on the total or the base space are established. The minimality of the fibres facilitates the transference of the structure from the total to the base space. Similarly, the superminimality of the fibres facilitates the transference of the structure from the base to the total space. Also, it is shown to be a way to study the integrability of the horizontal distribution. Totally contact umbilicity of the fibres leads to the asymptotic directions on the total space. Submersions of contact CR-submanifolds of quasi-K-cosymplectic and quasi-Kenmotsu manifolds are studied. Certain distributions of the under consideration submersions induce the CR-product on the total space. / Mathematical Sciences / D. Phil. (Mathematics)
6

The differential geometry of the fibres of an almost contract metric submersion

Tshikunguila, Tshikuna-Matamba 10 1900 (has links)
Almost contact metric submersions constitute a class of Riemannian submersions whose total space is an almost contact metric manifold. Regarding the base space, two types are studied. Submersions of type I are those whose base space is an almost contact metric manifold while, when the base space is an almost Hermitian manifold, then the submersion is said to be of type II. After recalling the known notions and fundamental properties to be used in the sequel, relationships between the structure of the fibres with that of the total space are established. When the fibres are almost Hermitian manifolds, which occur in the case of a type I submersions, we determine the classes of submersions whose fibres are Kählerian, almost Kählerian, nearly Kählerian, quasi Kählerian, locally conformal (almost) Kählerian, Gi-manifolds and so on. This can be viewed as a classification of submersions of type I based upon the structure of the fibres. Concerning the fibres of a type II submersions, which are almost contact metric manifolds, we discuss how they inherit the structure of the total space. Considering the curvature property on the total space, we determine its corresponding on the fibres in the case of a type I submersions. For instance, the cosymplectic curvature property on the total space corresponds to the Kähler identity on the fibres. Similar results are obtained for Sasakian and Kenmotsu curvature properties. After producing the classes of submersions with minimal, superminimal or umbilical fibres, their impacts on the total or the base space are established. The minimality of the fibres facilitates the transference of the structure from the total to the base space. Similarly, the superminimality of the fibres facilitates the transference of the structure from the base to the total space. Also, it is shown to be a way to study the integrability of the horizontal distribution. Totally contact umbilicity of the fibres leads to the asymptotic directions on the total space. Submersions of contact CR-submanifolds of quasi-K-cosymplectic and quasi-Kenmotsu manifolds are studied. Certain distributions of the under consideration submersions induce the CR-product on the total space. / Mathematical Sciences / D. Phil. (Mathematics)
7

Géométrie et dynamique des structures Hermite-Lorentz / Geometry and Dynamics of Hermite-Lorentz structures

Ben Ahmed, Ali 06 July 2013 (has links)
Dans la veine du programme d'Erlangen de Klein, travaux d'E. Cartan, M. Gromov, et d'autres, ce travail se trouve à cheval, entre la géométrie et les actions de groupes. Le thème global serait de comprendre les groupes d'isométries des variétés pseudo-riemanniennes. Plus précisément, suivant une "conjecture vague" de Gromov, classifier les variétés pseudo-riemanniennes dont le groupe d'isométries agit non-proprement, i.e. que son action ne préserve pas de métrique riemannienne auxiliaire?Plusieurs travaux ont été accomplis dans le cas des métriques lorentziennes (i.e. de signature (- +...+)). En revanche, le cas pseudo-riemannien général semble hors de portée.Les structures Hermite-Lorentz se trouvent entre le cas lorentzien et le premier cas pseudo-riemannien général, i.e. de signature (- - +…+). De plus, elle se définit sur des variétés complexes, et promet une extra-rigidité. Plus précisément, une structure Hermite-Lorentz sur une variété complexe consiste en une métrique pseudo-riemannienne de signature (- - +…+) qui est hermitienne au sens qu'elle est invariante par la structure presque complexe. Par analogie au cas hermitien classique, on définit naturellement une notion de métrique Kähler-Lorentz.Comme exemple, on a l'espace de Minkowski complexe ; dans un certain sens, on a un temps de dimension 1 complexe (du point de vue réel, le temps est 2-dimensionnel). On a également l'espace de Sitter et anti de Sitter complexes. Ils ont une courbure holomorphe constante, et généralisent dans ce sens les espaces projectifs et hyperboliques complexes.Cette thèse porte sur les variétés Hermite-Lorentz homogènes. En plus des exemples cités, il y a deux autres espaces symétriques, qui peuvent naturellement jouer le rôle de complexification des espaces de Sitter et anti de Sitter réels.Le résultat principal de la thèse est un théorème de rigidité de ces espaces symétriques : tout espace Hermite-Lorentz homogène à isotropie irréductible est l'un des cinq espaces symétriques précédents. D'autres résultats concernent le cas où l'on remplace l'hypothèse d'irréductibilité par le fait que le groupe d'isométries soit semi-simple. / In the vein of Klein's Erlangen program, the research works of E. Cartan, M.Gromov and others, this work straddles between geometry and group actions. The overall theme is to understand the isometry groups of pseudo-Riemannian manifolds. Precisely, following a "vague conjecture" of Gromov, our aim is to classify Pseudo-Riemannian manifolds whose isometry group act’s not properly, i.e that it’s action does not preserve any auxiliary Riemannian metric. Several studies have been made in the case of the Lorentzian metrics (i.e of signature (- + .. +)). However, general pseudo-Riemannian case seems out of reach. The Hermite-Lorentz structures are between the Lorentzian case and the former general pseudo-Riemannian, i.e of signature (- -+ ... +). In addition, it’s defined on complex manifolds, and promises an extra-rigidity. More specifically, a Hermite-Lorentz structure on a complex manifold is a pseudo-Riemannian metric of signature (- -+ ... +), which is Hermitian in the sense that it’s invariant under the almost complex structure. By analogy with the classical Hermitian case, we naturally define a notion of Kähler-Lorentz metric. We cite as example the complex Minkowski space in where, in a sense, we have a one-dimensional complex time (the real point of view, the time is two-dimensional). We cite also the de Sitter and Anti de Sitter complex spaces. They have a constant holomorphic curvature, and generalize in this direction the projective and complex hyperbolic spaces.This thesis focuses on the Hermite-Lorentz homogeneous spaces. In addition with given examples, two other symmetric spaces can naturally play the role of complexification of the de Sitter and anti de Sitter real spaces.The main result of the thesis is a rigidity theorem of these symmetric spaces: any space Hermite-Lorentz isotropy irreducible homogeneous is one of the five previous symmetric spaces. Other results concern the case where we replace the irreducible hypothesis by the fact that the isometry group is semisimple.
8

Digital Soil Mapping of the Purdue Agronomy Center for Research and Education

Shams R Rahmani (8300103) 07 May 2020 (has links)
This research work concentrate on developing digital soil maps to support field based plant phenotyping research. We have developed soil organic matter content (OM), cation exchange capacity (CEC), natural soil drainage class, and tile drainage line maps using topographic indices and aerial imagery. Various prediction models (universal kriging, cubist, random forest, C5.0, artificial neural network, and multinomial logistic regression) were used to estimate the soil properties of interest.

Page generated in 0.0975 seconds