1 |
[en] LOCALLY CONVEX HYPERSURFACES IMMERSED IN HN × R / [pt] HIPERSUPERFÍCIES LOCALMENTE CONVEXAS IMERSAS EM HN X RINES SILVA DE OLIVEIRA 19 April 2012 (has links)
[pt] Em 1897, J. Hadamard provou um resultado sobre superfícies compactas,
localmente estritamente convexas no espaço euclidiano R3, mostrando que
tais superfícies são mergulhadas e homeomorfas à esfera. A partir daí mui-
tas generalizações foram feitas adaptando as hipóteses sobre a curvatura e
considerando novos espaços em que estas superfícies pudessem ser imersas
de forma que resultados análogos fossem obtidos. Seguindo este contexto,
este trabalho generaliza um resultado tipo Hadamard-Stoker para hiper-
superfícies localmente convexas imersas em Hn x R. Provamos que toda
hipersuperfície completa, conexa, imersa em Hn x R com segunda forma
fundamental positiva deve ser mergulhada, homeomorfa à esfera Sn ou a
Rn, e no segundo caso estudamos o comportamento do fim. / [en] In 1897, J. Hadamard proved a result about compact, locally strictly convex
surfaces in the Euclidean space R3 showing that such surfaces are embedded
and homeomorphic to the sphere. Since then many generalizations were
made adapting the assumptions about the curvature and considering new
spaces in which these surfaces could be immersed so that analogous results
were obtained. Following this context, this work generalizes a result of
Hadamard-Stoker type to locally convex hypersurfaces immersed in Hn×R.
We prove that every complete connected hypersurface immersed in Hn ×R
with positive second fundamental is embedded, homeomorphic to the sphere
Sn or to Rn, and in the second case we study the behavior of the end.
|
2 |
[en] MINIMAL AND CONSTANT MEAN CURVATURE EQUIVARIANT HYPERSURFACES IN S(N) AND H(N) / [pt] HIPERSUPERFÍCIES EQUIVARIANTES MÍNIMAS E COM CURVATURA MÉDIA CONSTANTE EM S(N) E H(N)MARIA CLARA SCHUWARTZ FERREIRA 18 July 2008 (has links)
[pt] Neste trabalho estudamos hipersuperfícies equivariantes
mínimas ou com curvatura média constante imersas em S(n)
e H(n). Tais hipersuperfícies são construídas a partir de
uma curva em S(2) e em H(2) respectivamente, chamada de
curva
geratriz. A equação da curvatura média constante reduz-se
a
um sistema de EDO sobre a curva geratriz, e graças à
simetria do problema, podemos eliminar uma variável desse
sistema. O sistema simplificado, por sua vez, admite uma
integral primeira. No caso esférico, encontramos
condições para obter curvas soluções fechadas, produzindo
assim exemplos de hipersuperfícies compactas mínimas ou
com
curvatura média constante em S(n). Discutimos também a
questão do mergulho dessas hipersuperfícies.
No caso hiperbólico, nos limitamos ao caso das
hipersuperfícies mínimas; observamos que as curvas
soluções
não são fechadas e tratamos da questão do mergulho. / [en] In this work we study equivariant hypersurfaces in S(n) and
H(n) which are minimal or have constant mean curvature.
These
hypersurfaces are described via a curve in S(2) and H(2)
respectively, called the generating curve. In the
equivariant case, the constant mean curvature equation
reduces to an ODE on the generating curve, which can be
reduced by one variable using the symmetry of the problem.
It then turns out that this reduced system admits a first
integral. In the spherical case, we find conditions
insuring closedness of the integral curves, and we deduce
the existence of compact hypersurfaces which are minimal or
have constant mean curvature. We also discuss the question
of embeddedness of these hypersurfaces. In the hyperbolic
case, we limit ourselves to the minimal case. We observe
that the curves are no longer closed and again we discuss
embededdness.
|
3 |
Primeiro autovalor nÃo nulo de uma hipersuperfÃcie mÃnima na esfera unitÃria / First nonzero eigenvalue of a minimal hypersuperface in the unit sphereHenrique Blanco da Silva 23 August 2013 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / O objetivo deste trabalho à estudarmos o primeiro autovalor nÃo nulo do operador Laplaciano de hipersuperfÃcies compactas com curvatura mÃdia constante imersas na esfera unitÃria contida no espaÃo Euclidiano. Vamos mostrar que para o caso mÃnimo, teremos uma de trÃs possÃveis estimativas para este primeiro autovalor e, como consequÃncia de um possÃvel autovalor, esta hipersuperfÃcie serà isomÃtrica à uma esfera. / The aim of this work is we study the first nonzero eigenvalue of the Laplacian operator compact hypersurfaces with constant mean curvature immersed in the unit sphere contained in Euclidean space. We will show that for the minimal case, we will have one of three possible estimates for the first eigenvalue and, as a consequence of a possible eigenvalue, this hypersurface will be isometric to sphere.
|
4 |
Hipersuperfícies mínimas e completas de espaços simétricos / Complete minimal hipersurfaces in symmetric spacesOrjuela Chamorro, Jaime Leonardo 02 July 2012 (has links)
No presente trabalho construímos novos exemplos de hipersuperfícies mínimas, completas e H-equivariantes de espaços simétricos. Para tal, usamos o método da geometria diferencial equivariante (Hsiang-Lawson). Dividimos nosso estudo em duas partes, a saber, espaços simétricos G/K de tipo não compacto e compacto. No primeiro caso são estudadas ações polares de subgrupos H adaptados à decomposição de Iwasawa G=KAN. No segundo caso usamos a classificação (Podesta-Thobergsson) dos subgrupos H de Spin(9) que atuam com cohomogeneidade dois sobre o plano projetivo octoniônico F_4/Spin(9). / In the present work we construct new examples of complete minimal H-equivariant hypersurfaces of symmetric spaces G/K. For that, we use the equivariant differential geometry method (Hsiang-Lawson). We divide our research in two parts, namely, symmetric spaces of non-compact and compact type. In the first case we study polar actions of subgroups H adapted to the Iwasawa decomposition G=KAN. In the second case we use the classification (Podesta-Thobergsson) of the subgroups H of Spin(9) which act with cohomogeneity two on the octonionc projective plane F_4/Spin(9).
|
5 |
Hipersuperficies completas com curvatura de Gauss-Kronecker nula em esferas / Complete hypersurfaces with constant mean curvature and zero Gauss-Kronecker curvature in spheres.Zapata, Juan Fernando Zapata 05 September 2013 (has links)
Neste trabalho mostramos que hipersuperfícies completas da esfera Euclidiana S^4, com curvatura média constante e curvatura de Gauss-Kronecker nula são mínimas, sempre que o quadrado da norma da segunda forma fundamental for limitado superiormente. Além disso apresentamos uma descrisão local das hipersuperfícies mínimas e completas em S^5 com curvatura de Gauss- Kronecker nula e algumas hipóteses adicionais sobre as funções simétricas das curvaturas principais. / In this work we show that a complete hipersurface of the unitary sphere S^4, with constant mean curvature and zero Gauss-Kronecker curvature must be minimal, if the squared norm of the second fundamental form is bounded from above. Also, we present a local description for complete minimal hipersurfaces in S^5 with zero Gauss-Kronecker curvature, and some restrictions for the symmetric functions of the principal curvatures.
|
6 |
Hipersuperficies completas com curvatura de Gauss-Kronecker nula em esferas / Complete hypersurfaces with constant mean curvature and zero Gauss-Kronecker curvature in spheres.Juan Fernando Zapata Zapata 05 September 2013 (has links)
Neste trabalho mostramos que hipersuperfícies completas da esfera Euclidiana S^4, com curvatura média constante e curvatura de Gauss-Kronecker nula são mínimas, sempre que o quadrado da norma da segunda forma fundamental for limitado superiormente. Além disso apresentamos uma descrisão local das hipersuperfícies mínimas e completas em S^5 com curvatura de Gauss- Kronecker nula e algumas hipóteses adicionais sobre as funções simétricas das curvaturas principais. / In this work we show that a complete hipersurface of the unitary sphere S^4, with constant mean curvature and zero Gauss-Kronecker curvature must be minimal, if the squared norm of the second fundamental form is bounded from above. Also, we present a local description for complete minimal hipersurfaces in S^5 with zero Gauss-Kronecker curvature, and some restrictions for the symmetric functions of the principal curvatures.
|
7 |
Hipersuperfícies mínimas e completas de espaços simétricos / Complete minimal hipersurfaces in symmetric spacesJaime Leonardo Orjuela Chamorro 02 July 2012 (has links)
No presente trabalho construímos novos exemplos de hipersuperfícies mínimas, completas e H-equivariantes de espaços simétricos. Para tal, usamos o método da geometria diferencial equivariante (Hsiang-Lawson). Dividimos nosso estudo em duas partes, a saber, espaços simétricos G/K de tipo não compacto e compacto. No primeiro caso são estudadas ações polares de subgrupos H adaptados à decomposição de Iwasawa G=KAN. No segundo caso usamos a classificação (Podesta-Thobergsson) dos subgrupos H de Spin(9) que atuam com cohomogeneidade dois sobre o plano projetivo octoniônico F_4/Spin(9). / In the present work we construct new examples of complete minimal H-equivariant hypersurfaces of symmetric spaces G/K. For that, we use the equivariant differential geometry method (Hsiang-Lawson). We divide our research in two parts, namely, symmetric spaces of non-compact and compact type. In the first case we study polar actions of subgroups H adapted to the Iwasawa decomposition G=KAN. In the second case we use the classification (Podesta-Thobergsson) of the subgroups H of Spin(9) which act with cohomogeneity two on the octonionc projective plane F_4/Spin(9).
|
8 |
Hipersuperfícies conformemente euclidianas com curvatura média ou escalar constanteRei Filho, Carlos Gonçalves do 10 November 2016 (has links)
Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-05-31T16:42:01Z
No. of bitstreams: 1
TeseCGRF.pdf: 1149604 bytes, checksum: 8b0a42d65883e0af42693ac90b36059a (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-05-31T18:41:10Z (GMT) No. of bitstreams: 1
TeseCGRF.pdf: 1149604 bytes, checksum: 8b0a42d65883e0af42693ac90b36059a (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-05-31T18:41:18Z (GMT) No. of bitstreams: 1
TeseCGRF.pdf: 1149604 bytes, checksum: 8b0a42d65883e0af42693ac90b36059a (MD5) / Made available in DSpace on 2017-05-31T19:42:46Z (GMT). No. of bitstreams: 1
TeseCGRF.pdf: 1149604 bytes, checksum: 8b0a42d65883e0af42693ac90b36059a (MD5)
Previous issue date: 2016-11-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / In this work we study conformally flat hypersurfaces f: M3 ^ Q4(c) with three distinct principal curvatures in a space form with constant sectional curvature c, under the assumption that either its mean curvature H or its scalar curvature S is constant. In case H is constant, first we extend to any c G R a theorem due to Defever when c = 0 and show that there is no such hypersurface if H = 0. Our main results are for the minimal case H = 0. If c = 0, we prove that f (M3) is an open subset of a generalized cone over a Clifford torus in an umbilical hypersurface Q4(c) C Q4(c), c > 0, with c > c if c > 0. For c = 0, we show that, besides the cone over the Clifford torus in S3 C R4, there exists precisely a one-parameter family of (congruence classes of) minimal isometric immersions f: M3 ^ R4 with three distinct principal curvatures of simply-connected conformally flat Riemannian manifolds. Assuming S to be constant, we only study the case c = 0. We prove that f (M3) is an open subset of a cylinder over a surface of nonzero constant Gauss curvature in R3. / Nesta tese estudamos hipersuperfícies conformemente euclidianas f : M3 ^ Q4(c), com três curvaturas principais distintas e curvatura média H ou curvatura escalar S constante, em formas espaciais com curvatura seccional c. No caso em que a curvatura média H é constante, inicialmente estendemos para c arbitrário um resultado provado por Defever [10] quando c =0 e mostramos que uma tal hipersuperfície não existe se H = 0. Nossos principais resultados são para o caso mínimo H = 0. Se c = 0, mostramos que f (M3) é um subconjunto aberto de um cone generalizado sobre um toro de Clifford em uma hipersuperfície umbílica Q3(c) C Q4(c), c > 0, com c > c se c > 0. Para c = 0, mostramos que, além do cone sobre o toro de Clifford em S3 C R4, existe precisamente uma família a 1-parâmetro de hipersuperfícies conformemente euclidianas com três curvaturas principais distintas duas a duas não congruentes, sendo o cone sobre o toro de Clifford o elemento singular da família. No caso em que a curvatura escalar é constante, estudamos apenas o caso c = 0. Mostramos, nesse caso, que f (M3) é um subconjunto aberto de um cilindro sobre uma superfície de curvatura Gaussiana constante do espaço euclidiano R3.
|
9 |
Hipersuperfícies mínimas completas estáveis com curvatura total finita / Stable complete minimal hypersurfaces with finite total curvatureRocha, Robério Batista da 30 March 2010 (has links)
The main goal of this dissertation is to present some results on minimal hypersurfaces in the Euclidean space related to the stability operator. Initially, we will present the demonstrations of the formulas of first and second variations of area and also the demonstration of the Simons inequality. These results (which are basic results of the theory) will be used later. Next we will present the proof of the do Carmo-Peng s theorem showing that a complete stable minimal hypersurface immersed in the Euclidean space with finite L2 norm of the second fundamental form is a hyperplane. We will include in this dissertation a similar result with the L3 norm of the second fundamental form. This last result was proved by Li-Wei in the case where the hypersurface has dimension 3, but we note that proof applies to 3≤n≤7. We will conclude by presenting some results on non-stable minimal hypersurfaces in R^3 due to Fischer-Colbrie and Lopez-Ros. In particular, we will show that the catenoid and Enneper s surface are the only minimal complete orientable surfaces with index equal to one. / O objetivo principal desta dissertação é apresentar alguns resultados importantes sobre hipersuperfícies mínimas no espaço Euclidiano relacionados com o operador de estabilidade. Inicialmente, apresentaremos as demonstrações das fórmulas da primeira e da segunda variações da área bem como a demonstração da desigualdade de Simons. Estes resultados, que são básicos da teoria, serão usados posteriormente. Em seguida, apresentaremos a demonstração do teorema de do Carmo-Peng, o qual assegura que uma hipersuperfície mínima completa estável imersa no espaço Euclidiano com a norma L2 da segunda forma fundamental finita é um hiperplano. Incluiremos na dissertação um resultado análogo com a norma L3 da segunda forma fundamental. Este último resultado foi provado por Li-Wei no caso em que a hipersuperfície tem dimensão 3, mas notamos que a demonstração se aplica para 3≤n≤7. Concluiremos apresentando alguns resultados sobre hipersuperfícies mínimas não estáveis no R^3 obtido por Fischer-Colbrie e López-Ros. Em particular, mostraremos que o catenóide e a superfície de Enneper são as únicas superfícies mínimas completas e orientadas com índice igual a um.
|
10 |
GrÃficos conformes com curvatura de ordem superior prescrita / Conformal killing graphs with prescribed higher order curvatureFrancisco Josà de Andrade 11 January 2008 (has links)
CoordenaÃÃo de AperfeiÃoamento de NÃvel Superior / O principal objetivo de nossa investigÃÃo à determinar condiÃÃes para a existÃncia de hipersuperfÃcies fechadas com curvatura prescrita em produtoswarped e, mais geralmente, em variedades dotadas de um campo de Killing conforme.
Empreendemos esta anÃlise em duas etapas, a primeira das quais à o estabelecimento
de estimativas a priori atà segunda ordem de uma funÃÃo cujo
grÃfico satisfaz a equaÃÃo diferencial correspondente a condiÃÃo de curvatura prescrita. A segunda parte consiste em empregar uma variante adequada da teoria do grau ao problema que consideramos. / The main purpose of our investigation is to determine conditions for the existence of closed hypersurface with prescribed curvature in products warped and, more usually, in manifolds endowed with conformal Killing vector fields.
We undertook this analysis in two stages, the first one being the establishment of estimates a priori up to second order of a function whose graph satisfies the corresponding differential equation. The second part consists of using an appropriate variant of the theory of the degree to the problem that we considered.
|
Page generated in 0.0807 seconds