381 |
Sediment dynamics on the shore slopes of the Puget Island reach of the Columbia River, Oregon and WashingtonAbbe, Timothy 01 January 1989 (has links)
Water waves generated by wind and ships; ebb tidal currents; water level fluctuations; and dredging impact sediment transport in shallow water of the lower Columbia River. Observations were made over a one-year period after sand dredged from the navigation channel was placed at three study sites in the Puget Island region, 46°15'N 123°25'W, Oregon and Washington. Sediment composition is fine to medium grained, low density dacitic volcanics with small percentages of pumice, heavy minerals, and basalt.
|
382 |
Large Eddy Simulation of Oscillatory Flow over a Mobile Rippled Bed using an Euler-Lagrange ApproachHagan, Daniel S. 01 January 2018 (has links)
A volume-filtered Large-Eddy Simulation (LES) of oscillatory flow over a rippled mobile bed is conducted using an Euler-Lagrange approach. As in unsteady marine flows over sedimentary beds, the experimental data, referenced in this work for validation, shows quasi-steady state ripples in the sand bed under oscillatory flow. This work approximately reproduces this configuration with a sinusoidal pressure gradient driven flow and a sinusoidally rippled bed of particles. The LES equations, which are volume-filtered to account for the effect of the particles, are solved on an Eulerian grid, and the particles are tracked in a Lagrangian framework. In the Discrete Particle Method (DPM) used in this work, the particle collisions are handled by a soft-sphere model, and the liquid and solid phases are coupled through volume fraction and momentum exchange terms. Comparison of the numerical results to the experimental data show that the LES-DPM is capable of capturing the mesoscale features of the flow. The large scale shedding of vortices from the ripple peaks are observed in both datasets, which is reflected in the good quantitative agreement between the wall-normal flow statistics, and good qualitative agreement in ripple shape evolution. Additionally, the numerical data provides three insights into the complex interaction between the three-dimensional flow dynamics and bed morphology: (1) there is no observable distinction between reptating and saltating particle velocities, angular velocities or observed Shields parameters; (2) the potential motion of the mobile bed may create issues in the estimation of the bed shear stress used in classical models; and, (3) a helical pairing of vortices is observed, heretofore not known to have to have been identified in this type of flow configuration.
|
383 |
Morphodynamics of Shell Key and Mullet Key Barrier Islands: Their Origin and DevelopmentWestfall, Zachary J. 29 October 2018 (has links)
Shell Key and Mullet Key are two sandy barrier islands on the West Central Florida coast near the mouth of Tampa Bay. These islands are part of an interconnected barrier-inlet system that includes Pass-a-Grille (PAG) and Bunces Pass. Shell Key is a relatively new island about 40-years of age that formed in between the two inlets of Bunces Pass and PAG. Mullet Key is an island to the south of Shell Key situated between Bunces Pass and the main Tampa Bay channel that has demonstrated large scale upward shoaling events. Using numerical modeling, the wave and tidal conditions at the dual-inlet system were investigated in order to understand the hydrodynamic conditions that drive the morphology change. Historical aerial imagery and historical nautical charts were analyzed to determine the large scale accretionary and erosive changes that happened in the study area from 1873 to 2018. Four historical nautical charts, from 1873, 1928, 1966, and 1996 were digitized to create bathymetry maps of the two islands, their adjacent inlets, and the ebb shoals. These historical bathymetry maps were compared with the bathymetry survey by this study in 2016. The research goal of this thesis is to investigate the mechanism of origin and development of two barrier islands along the coast of West Central Florida through a time series of photos combined with numerical modeling.
Based on aerial photos from 1984 to 2018, the overall shape and orientation of ebb shoals at both Bunces Pass and PAG were analyzed in order to examine the effect that the 30 year swash bar cycle at Bunces Pass has on a connected inlet system. The ebb shoal orientations were compared to see how swash bar initiation would affect the two ebb shoals; most notably Bunces Pass ebb shoal. A bending of the entire Bunces Pass ebb shoal was identified over the 2002-2018 time span corresponding to the development of a large sand feature located here.
Further numerical modeling was conducted at PAG to determine the factors controlling the formation of Shell Key. Before the 1970s, the PAG inlet included two branches, the North PAG Channel and the South PAG Channel. A major dredging event took place at the North PAG Channel in 1966 causing significant widening and deepening of the channel. This dredging event was simulated to quantify the impact to the natural flow pattern. The 1966 dredging project had a significant impact to the overall flow pattern, increasing the ebb jet flow velocity by 0.8 m/s over the dredged area and significantly decreasing flow velocity by -0.4 m/s over a large area where the South PAG Channel was previously located. This artificially induced change of flow pattern resulted in the closure of South PAG Channel and the corresponding development of Shell Key.
|
384 |
Evolution and Equilibration of Artificial Morphologic Perturbations in the Form of Nearshore Berm Nourishments Along the Florida Gulf CoastBrutsché, Katherine Emily 26 June 2014 (has links)
Inlets and channels are dredged often to maintain navigation safety. It is beneficial to reintroduce the dredged material back into the littoral system, in the form of beach or nearshore nourishments. Nourishment in the nearshore is becoming an increasingly utilized method, particularly for dredged material that contains more fine sediment than the native beach. This research examines the morphologic evolution of two different nearshore nourishments. A nearshore berm was constructed at Fort Myers Beach, Florida using mixed-sized sediment dredged from a nearby channel. The nearshore berm was placed in water depths between 1.2 and 2.4 m with the berm crest just below MLLW in the shape of a bar. The nearshore berm migrated onshore while the system was approaching a dynamic equilibrium. Near the end of the fourth year, the beach profiles had returned to the equilibrium shape characteristic of the study area. Gaps in the berm allowed water circulation and should be considered as a design parameter. The fine sediment fractions in the original placed material was selectively transported and deposited offshore, while the coarser component moved onshore. The dry beach maintained the same sediment properties throughout the study period and was not influenced by the fine sediment in the initial construction of the berm. Another nearshore nourishment was placed along eastern Perdido Key, Florida in 2011-2012 using maintenance dredged material from nearby Pensacola Pass. Different from the Fort Myers Beach berm, the material was placed within the swash-zone, with a maximum elevation of +0.91 m NAVD88 (or 0.62 m above MHHW). The low constructed berm elevation allowed natural overwash processes to occur frequently, which resulted in net onshore sediment transport and growth of the active beach berm. Sediment volume gain west of the project area due to longshore spreading of the nourishment occurred mostly in the trough between the shoreline and the bar, rather than on the dry beach. The swash-zone berm evolved back to the natural equilibrium profile shape maintained in the study area within 8 months. The performance of the swash-zone nourishment was compared to two previous beach nourishments at the same location in 1985 and 1989-1991, with higher berm elevations, at +3 m and +1.2 m NAVD88, respectively. The 1.2-km 1985 nourishment performed the poorest with a shoreline retreat rate of 40 m/year. The 7.3-km 1989-1991 nourishment performed the best with a retreat rate of 11 m/year. This suggests that high berm elevations do not necessarily lead to better nourishment performance. Longshore extent of a nourishment may play an essential role. The distant passage of two tropical storms (Tropical Storm Debby and Hurricane Isaac) generated high waves for the study areas. The two berm nourishments responded differently to the storm. Response was also compared to a beach nourishment in Sand Key. The bar-shaped Fort Myers Beach berm was split into two smaller bars, while a storm berm developed for the swash-zone nourishment at Perdido Key. In both cases, the energetic storm conditions accelerated the evolution of the berm profiles toward equilibrium. As compared to the measured nearshore waves by this study, CMS-Wave accurately propagated the WIS Hindcast waves. SBEACH accurately captured the maximum water elevation, consistent with measured upper limit of morphology change. The model correctly predicted beach and nearshore erosion during the storms. The growth of the storm berm at the Perdido Key swash-zone nourishment was predicted reasonably well by the SBEACH model. However, the magnitudes of the storm-induced erosion and the locations of the offshore bar were not accurately predicted consistently.
|
385 |
Controls on stream dissolved organic carbon concentration in several small catchments in Southern QuebecEckhardt, Bernard William January 1989 (has links)
No description available.
|
386 |
Change in geomorphology, hydrodynamics and surficial sediment of the tauranga entrance tidal delta systemBrannigan, Adrian January 2009 (has links)
Historical change in the geomorphology, hydrodynamics, and surficial sediment of the tidal delta system of Tauranga Harbour are investigated with the general aim of analysing The general aims of this thesis are: firstly to analyse historical changes to inlet delta system geomorphology using historical hydrographic charts, secondly, to conduct hydrodynamic numerical modelling using historical bathymetries to access changes in peak spring flow and potential net tidal sediment transport, and thirdly, to analyse historical changes in surficial sediment and bedforms. Geomorphic change was investigated through plotting difference in bathymetry graphs and conducting cross sections taken from digisitied bathymetries obtained from historical hydrographic charts from 1852, 1879, 1901, 1927, 1954 and a modern bathymetry from 2006. Two-dimensional hydrodynamic numerical modelling was conducted to investigate the changes in peak tidal current flow and potential net sediment transport between 1852 and 2006. Changes in surficial sediment patterns were determined through completing a side scan sonar survey with associated sediment samples for ground truthing of grain size and underwater videography to gather surficial shell coverage information. This was used to produce a surficial sediment coverage map which was compared to historical studies Major geomorphological findings include that the shipping channel appears to have induced minor change in the geomorphology of the FTD but such changes are similar to those identified in the historical bathymetries of 1852, 1879, 1901, 1927, 1954 prior to dredging. Significant changes have occurred on the ETD, with the majority of the ETD showing scour of 1 m while the terminal lobe has extended seawards. This is associated with historical (since 1852) narrowing of the inlet from Panepane Point to Mt Maunganui by ~ 900 m. Hydrodynamic numerical modelling has shown a significant increase in potential net tidal sediment transport in the Cutter Channel due to dredging, while the Maunganui Roads Channel shows a reduction of net potential tidal sediment transport that is associated with the dredging of this channel. The area surrounding Panepane Point undergoes significant increases and decreases in net potential tidal sediment transport both before and after dredging Investigation of the surficial sediment patterns over the FTD and ETD from sidescan sonar and bottom samples show that between 1983 and 2007 there has been a northwards extension of the area of major shell (greater than 50 %) converge in the main ebb channel as well as reduction in major shell converge in flood tidal delta ebb shield region. The Maunganui Roads Channel changes from sitly sands to medium and fine sands.
|
387 |
The Quantification of Estuarine Suspended Sediment Dynamics: A Drogue's PerspectiveSchacht, Christie, n/a January 2006 (has links)
The knowledge and understanding of sediment transport is essential for the development of effective management strategies for nutrient and sediment loading in estuarine systems. Estuarine suspended sediment (in high concentrations), has the ability to adversely impact upon surrounding ecosystems, such as the Great Barrier Reef, Australia. Due to a recent decline in water and sediment quality, it has recently been mandated that a number of tropical, coastal estuarine systems in Queensland, such as the Fitzroy River estuary, have their sediment loading reduced. In order to meet these requirements, a greater understanding of the sediment transport dynamics and driving processes (such as flocculation and settling velocity) needs to be achieved, and the accuracy of estimation improved. This research project was motivated by the need to improve the general accuracy of field measurements for estuarine suspended sediment transport and dynamics. Field-based measurements (especially settling velocity) are necessary for the parameterisation of sediment transport models. The difficulty in obtaining accurate, in situ data is well documented and is generally limited to methods that isolate a water sample from its natural environment, removing all influences of estuarine turbulence. Furthermore, the water samples are often extracted from points (Eulerian) where the history of the suspended particles is generally unknown. These sampling methods typically contain intrinsic errors as suspended sediment transport is essentially Lagrangian (i.e., flows with the net motion of flow-field) in nature. An investigation into different drogue systems conducted in parallel with a study into the tidal states of the Fitzroy River estuary led to the development of a novel Lagrangian drogue device, the LAD. Additionally, the water-tracking ability of the LAD was tested and found to accurately follow a parcel of estuarine water over a slack water period. Therefore the LAD was deployed in the Fitzroy River to assist in the further understanding of complex sediment transport processes such as flocculation and settling velocity in a natural estuarine flow field. The final device (the LAD - Lagrangian Acoustic Drogue) was developed, utilizing the principals of acoustic backscatter intensity-derived SSC measurements. The investigation of a series LAD deployments (during slack water) in the Fitzroy River estuary, revealed the dominant suspended sediment processes and also gave an insight into the prevailing flow-patterns. Results showed the presence of a settling lag mechanism between low and high tide, which can initiate a net sediment flow upstream with each flood tide. The bulk settling velocity showed comparable results at both low and high water. The LAD derived bulk settling velocity as a function of concentration (SSC), yielding a strong positive correlation (r2 = 0.73). Also the importance of flocculation in the bulk settling and clear up of the water column during periods of still water (high and low tide) was demonstrated as all in situ settling velocities (0.33 - 1.75 mm s-1) exceeded single grain approximations (0.47 mm s-1). This research demonstrates the potential for Lagrangian drogue studies as an effective measuring platform for the accurate quantification of estuarine suspended sediment dynamics. The application of the LAD in the Fitzroy River has lead to a significant improvement in the understanding of the system's real sediment transport processes. This research has provided an effective and accurate technique for measuring real settling velocities for input into numerical models or for the validation of existing model outputs. Furthermore, this technique shows great potential for application in other estuarine systems.
|
388 |
A spectral approach to the transient analysis of wave-formed sediment ripples.Davis, Joseph P. January 2005 (has links)
Wave-formed rippled sediment beds are extremely important to the processes that act on or across the sediment-water interface. Ripples increase the exchange of materials between the sediment and the water column, enhance sediment transport rates, and act to increase the dissipation of waves by increasing the hydraulic roughness of the seafloor. Previous research has, however, failed to take into account the substantial spatial and temporal variation rippled beds display when formed under real sea conditions. Based on a set of laboratory experiments a spectral method to predict and model rippled beds has been developed. Through the use of the rippled surface's spectral density function the spatial and temporal variability of the rippled surface can be taken into account with greater efficiency. A prediction method for the equilibrium ripple spectrum was developed based on a nondimensional spectral form, which utilised the peak orbital excursion diameter and the 50th percentile grain size diameter of the sediment bed. The method provided an effective technique to predict ripple parameters with the same degree of accuracy achievable at small scale as more accepted ripple prediction methods. A new method was derived to model the changes a rippled bed undergoes as it actively evolves between two given equilibrium states due to a change in surface wave conditions. The evolution of a rippled bed can be described mathematically in exactly the same way as a rippled bed growing from a flat bed condition. The method allows any bed to be modelled through time if the flow conditions and sediment properties are known. There is little advantage in using the spectral method to predict rippled beds when they are in equilibrium with the flow conditions. The main benefit of the spectral method comes when attempting to model rippled beds evolving under changed flow conditions. In the same way as the parameterisation of surface waves in terms of their spectral density function has increased the ability to model wind generated wave fields, studies of rippled beds would benefit from the increased detail and ease the spectral method brings. / Thesis (Ph.D.)--School of Civil and Environmental Engineering, 2005.
|
389 |
Characterization of nutrient and suspended sediment concentrations in stormwater runoff in the Lake Tahoe basinGunter, Melissa K. January 2005 (has links)
Thesis (M.S.)--University of Nevada, Reno, 2005. / "May, 2005." Includes bibliographical references. Online version available on the World Wide Web.
|
390 |
Sheet Flow Sediment Transport and Swash HydrodynamicsPaul Guard Unknown Date (has links)
The unsteady nature of coastal hydrodynamics is associated with complex boundary layer dynamics and hence engineering predictions of shear stresses and sediment transport are difficult. This thesis explores some of the complex hydrodynamic problems and boundary layer behaviour in the coastal zone and seeks to provide new and improved modelling approaches. The latest experimental results are used to inform the model development process. New laboratory experiments carried out as part of this thesis illustrate the value of convolution integral calculations for both pressure and skin friction forces on particles on the bed. The experiments also highlight the importance of the phase differences between free stream velocity and boundary layer shear stresses. The use of a “bed” shear stress as a model input is found to be problematic whenever there is a large vertical gradient in the boundary layer shear stress. New experimental and modelling work has helped to improve our understanding of sheet flow boundary layer dynamics. This thesis builds on some of these new discoveries to propose a new simplified model framework for sheet flow sediment transport prediction using convolution integrals. This time domain technique has the advantage of simplicity while incorporating the most important physical processes from more detailed models. The new model framework could be incorporated into any depth averaged coastal hydrodynamic modelling software package. Boundary layer analysis techniques presented in the thesis provide an improved understanding of the effective roughness of mobile beds and can be used to calculate instantaneous shear stress profiles throughout the mobile bed boundary layer. New solutions for swash zone hydrodynamics are presented which illustrate the limitations of the previous benchmark analytical model for swash hydrodynamics. It is shown that real swash necessarily involves a much larger influx of mass and momentum than the analytical solution which was previously used by many in the swash sediment transport research community. Models for swash boundary layer development are also presented.
|
Page generated in 0.0848 seconds