• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effect of Aluminium Industry Effluents on Sediment Bacterial Communities

Gill, Hardeep 19 October 2012 (has links)
The goal of this project was to develop novel bacterial biomarkers for use in an industrial context. These biomarkers would be used to determine aluminium industry activity impact on a local ecosystem. Sediment bacterial communities of the Saguenay River are subjected to industrial effluent produced by industry in Jonquière, QC. In-situ responses of these communities to effluent exposure were measured and evaluated as potential biomarker candidates for exposure to past and present effluent discharge. Bacterial community structure and composition between control and affected sites were investigated. Differences observed between the communities were used as indicators of a response to industrial activity through exposure to effluent by-products. Diversity indices were not significantly different between sites with increased effluent exposure. However, differences were observed with the inclusion of algae and cyanobacteria. UniFrac analyses indicated that a control (NNB) and an affected site (Site 2) were more similar to one another with regard to community structure than either was to a medially affected site (Site 5) (Figure 2.4). We did not observe a signature of the microbial community structure that could be predicted with effluent exposure. Microbial community function in relation to bacterial mercury resistance (HgR) was also evaluated as a specific response to the mercury component present in sediments. Novel PCR primers and amplification conditions were developed to amplify merP, merT and merA genes belonging to the mer-operon which confers HgR (Table 5.6). To our knowledge, the roles of merP and merT have not been explored as possible tools to confirm the presence of the operon. HgR gene abundance in sediment microbial communities was significantly correlated (p < 0.05) to total mercury levels (Figure 3.4) but gene expression was not measurable. We could not solely attribute the release of Hg0 from sediments in bioreactor experiments to a biogenic origin. However, there was a 1000 fold difference in measured Hg0 release between control and affected sites suggesting that processes of natural remediation may be taking place at contaminated sites (Figure 3.7). Abundance measurements of HgR related genes represent a strong response target to the mercury immobilized in sediments. Biomarkers built on this response can be used by industry to measure long term effects of industrially derived mercury on local ecosystems. The abundance of mer-operon genes in affected sites indicates the presence of a thriving bacterial community harbouring HgR potential. These communities have the capacity to naturally remediate the sites they occupy. This remediation could be further investigated. Additional studies will be required to develop biomarkers that are more responsive to contemporary industrial activity such as those based on the integrative oxidative stress response.
2

The Effect of Aluminium Industry Effluents on Sediment Bacterial Communities

Gill, Hardeep 19 October 2012 (has links)
The goal of this project was to develop novel bacterial biomarkers for use in an industrial context. These biomarkers would be used to determine aluminium industry activity impact on a local ecosystem. Sediment bacterial communities of the Saguenay River are subjected to industrial effluent produced by industry in Jonquière, QC. In-situ responses of these communities to effluent exposure were measured and evaluated as potential biomarker candidates for exposure to past and present effluent discharge. Bacterial community structure and composition between control and affected sites were investigated. Differences observed between the communities were used as indicators of a response to industrial activity through exposure to effluent by-products. Diversity indices were not significantly different between sites with increased effluent exposure. However, differences were observed with the inclusion of algae and cyanobacteria. UniFrac analyses indicated that a control (NNB) and an affected site (Site 2) were more similar to one another with regard to community structure than either was to a medially affected site (Site 5) (Figure 2.4). We did not observe a signature of the microbial community structure that could be predicted with effluent exposure. Microbial community function in relation to bacterial mercury resistance (HgR) was also evaluated as a specific response to the mercury component present in sediments. Novel PCR primers and amplification conditions were developed to amplify merP, merT and merA genes belonging to the mer-operon which confers HgR (Table 5.6). To our knowledge, the roles of merP and merT have not been explored as possible tools to confirm the presence of the operon. HgR gene abundance in sediment microbial communities was significantly correlated (p < 0.05) to total mercury levels (Figure 3.4) but gene expression was not measurable. We could not solely attribute the release of Hg0 from sediments in bioreactor experiments to a biogenic origin. However, there was a 1000 fold difference in measured Hg0 release between control and affected sites suggesting that processes of natural remediation may be taking place at contaminated sites (Figure 3.7). Abundance measurements of HgR related genes represent a strong response target to the mercury immobilized in sediments. Biomarkers built on this response can be used by industry to measure long term effects of industrially derived mercury on local ecosystems. The abundance of mer-operon genes in affected sites indicates the presence of a thriving bacterial community harbouring HgR potential. These communities have the capacity to naturally remediate the sites they occupy. This remediation could be further investigated. Additional studies will be required to develop biomarkers that are more responsive to contemporary industrial activity such as those based on the integrative oxidative stress response.
3

The Effect of Aluminium Industry Effluents on Sediment Bacterial Communities

Gill, Hardeep January 2012 (has links)
The goal of this project was to develop novel bacterial biomarkers for use in an industrial context. These biomarkers would be used to determine aluminium industry activity impact on a local ecosystem. Sediment bacterial communities of the Saguenay River are subjected to industrial effluent produced by industry in Jonquière, QC. In-situ responses of these communities to effluent exposure were measured and evaluated as potential biomarker candidates for exposure to past and present effluent discharge. Bacterial community structure and composition between control and affected sites were investigated. Differences observed between the communities were used as indicators of a response to industrial activity through exposure to effluent by-products. Diversity indices were not significantly different between sites with increased effluent exposure. However, differences were observed with the inclusion of algae and cyanobacteria. UniFrac analyses indicated that a control (NNB) and an affected site (Site 2) were more similar to one another with regard to community structure than either was to a medially affected site (Site 5) (Figure 2.4). We did not observe a signature of the microbial community structure that could be predicted with effluent exposure. Microbial community function in relation to bacterial mercury resistance (HgR) was also evaluated as a specific response to the mercury component present in sediments. Novel PCR primers and amplification conditions were developed to amplify merP, merT and merA genes belonging to the mer-operon which confers HgR (Table 5.6). To our knowledge, the roles of merP and merT have not been explored as possible tools to confirm the presence of the operon. HgR gene abundance in sediment microbial communities was significantly correlated (p < 0.05) to total mercury levels (Figure 3.4) but gene expression was not measurable. We could not solely attribute the release of Hg0 from sediments in bioreactor experiments to a biogenic origin. However, there was a 1000 fold difference in measured Hg0 release between control and affected sites suggesting that processes of natural remediation may be taking place at contaminated sites (Figure 3.7). Abundance measurements of HgR related genes represent a strong response target to the mercury immobilized in sediments. Biomarkers built on this response can be used by industry to measure long term effects of industrially derived mercury on local ecosystems. The abundance of mer-operon genes in affected sites indicates the presence of a thriving bacterial community harbouring HgR potential. These communities have the capacity to naturally remediate the sites they occupy. This remediation could be further investigated. Additional studies will be required to develop biomarkers that are more responsive to contemporary industrial activity such as those based on the integrative oxidative stress response.

Page generated in 0.0864 seconds