1 |
Transient seismic velocities beneath active volcanoesCody Adam Kupres (18418983) 22 April 2024 (has links)
<p dir="ltr">Studying changes in seismic velocities beneath two separate volcanic systems in the Aleutian arc. Focusing on eruptive behavior, this research delineates subsurface changes through the lens of changes in seismic velocity.</p>
|
2 |
In Situ Compressional Wave Velocity Across An Exposed Brittle Fault ZoneSayed, Ali Yawar 06 August 2001 (has links)
The effects of lithology, fracturing, and gouge zone mineralization on the geophysical properties of fault zones are not very well understood. In situ seismic data collected over the exhumed San Gregorio Fault at Moss Beach, CA were used to relate in situ compressional wave velocity to internal fault zone properties. This active strike-slip fault is exposed in cross section on an uplifting and actively eroding wave-cut platform. It cuts shallow marine sediments that have been buried to depths of a few kilometers. The unweathered exposure containing seawater makes it a unique analog of subsurface faults. Previous structural analysis over this exposure observed damage caused by faulting over a ~100 m wide zone in cross-section. The fault zone is centered at a 10-17 m wide clay-rich fault core flanked by a ~30 m wide brecciated gouge zone. These gouge zones are bordered on either side by 30-40 m wide fractured zones. Resolving to a scale of a few meters, the seismic survey produced a continuous P-wave velocity profile analogous to a horizontal well log across the fault. Lateral variations in the velocity profile correlate exactly to previously mapped fault zone structure. The clay core and adjacent brecciated gouge create a ~50 m wide very low velocity zone, 25-50% slower than the surrounding host rock. Fractured bedrock on either side of the core causes a wider zone of 5-10% slow velocity, for a total fault signature ~100 m wide. Fault parallel fracture anisotropy was observed in the fractured zones, but surprizingly anisotropy was not observed in the strongly foliated gouge zones. The field measurements differ significantly from laboratory measurements at zero pressure and in some cases from expected values for saturated rock of this porosity, perhaps due to biased rock sampling, the long wavelength effects of macrofractures, frequency dispersion, and partial saturation. The velocity profile is similar in width and consistent in velocity contrast to low S-wave velocity zones derived from fault zone guided waves in other strike-slip faults. The traveltime delay across the fault zone is not large enough to cause the 2-3 km wide crustal low velocity zones modeled by refraction studies. Synthetic reflection seismograms in the typical frequency range show that the fault zone acts as a thick bed or as a constructively interfering thin bed. The models suggest that very large reflection coefficients observed across accretionary prism faults can be explained by fracturing, brecciation and clay content without elevated pore pressures. Comparison with a refraction study across the Punchbowl Fault shows a similar structural zonation of these two well-studied examples of brittle fault zones. This suggests that high-resolution seismic velocity models can be used to directly interpret internal deformation structure of brittle faults. / Master of Science
|
3 |
2D and 3D Seismic Surveying at the CO2SINK Project Site, Ketzin, Germany: The Potential for Imaging the Shallow SubsurfaceYordkayhun, Sawasdee January 2008 (has links)
Seismic traveltime inversion, traveltime tomography and seismic reflection techniques have been applied for two dimensional (2D) and three dimensional (3D) data acquired in conjunction with site characterization and monitoring aspects at a carbon dioxide (CO2) geological storage site at Ketzin, Germany (the CO2SINK project). Conventional seismic methods that focused on investigating the CO2 storage and caprock formations showed a poor or no image of the upper 150 m. In order to fill this information gap, an effort on imaging the shallow subsurface at a potentially risky area at the site is the principal goal of this thesis. Beside this objective, a seismic source comparison from a 2D pilot study for acquisition parameter testing at the site found a weight drop source suitable with respect to the signal penetration, frequency content of the data and minimizing time and cost for 3D data acquisition. For the Ketzin seismic data, the ability to obtain high-quality images is limited by the acquisition geometry, source-generated noise and time shifts due to near-surface effects producing severe distortions in the data. Moreover, these time shifts are comparable to the dominant periods of the reflections and to the size of structures to be imaged. Therefore, a combination of seismic refraction and state-of-the-art processing techniques, including careful static corrections and more accurate velocity analysis, resulted in key improvements of the images and allowed new information to be extracted. The results from these studies together with borehole information, hydrogeologic models and seismic modeling have been combined into an integrated interpretation. The boundary between the Quaternary and Tertiary unit has been mapped. The internal structure of the Quaternary sediments is likely to be complicated due to the shallow aquifer/aquitard complex, whereas the heterogeneity in the Tertiary unit is due to rock alteration associated with fault zones. Some of the major faults appear to project into the Tertiary unit. These findings are important for understanding the potentially risky anticline crest and can be used as a database for the future monitoring program at the site.
|
4 |
2D and 3D Seismic Surveying at the CO2SINK Project Site, Ketzin, Germany: The Potential for Imaging the Shallow SubsurfaceYordkayhun, Sawasdee January 2008 (has links)
<p>Seismic traveltime inversion, traveltime tomography and seismic reflection techniques have been applied for two dimensional (2D) and three dimensional (3D) data acquired in conjunction with site characterization and monitoring aspects at a carbon dioxide (CO<sub>2</sub>) geological storage site at Ketzin, Germany (the CO<sub>2</sub>SINK project). Conventional seismic methods that focused on investigating the CO<sub>2</sub> storage and caprock formations showed a poor or no image of the upper 150 m. In order to fill this information gap, an effort on imaging the shallow subsurface at a potentially risky area at the site is the principal goal of this thesis.</p><p>Beside this objective, a seismic source comparison from a 2D pilot study for acquisition parameter testing at the site found a weight drop source suitable with respect to the signal penetration, frequency content of the data and minimizing time and cost for 3D data acquisition.</p><p>For the Ketzin seismic data, the ability to obtain high-quality images is limited by the acquisition geometry, source-generated noise and time shifts due to near-surface effects producing severe distortions in the data. Moreover, these time shifts are comparable to the dominant periods of the reflections and to the size of structures to be imaged. Therefore, a combination of seismic refraction and state-of-the-art processing techniques, including careful static corrections and more accurate velocity analysis, resulted in key improvements of the images and allowed new information to be extracted. The results from these studies together with borehole information, hydrogeologic models and seismic modeling have been combined into an integrated interpretation. The boundary between the Quaternary and Tertiary unit has been mapped. The internal structure of the Quaternary sediments is likely to be complicated due to the shallow aquifer/aquitard complex, whereas the heterogeneity in the Tertiary unit is due to rock alteration associated with fault zones. Some of the major faults appear to project into the Tertiary unit. These findings are important for understanding the potentially risky anticline crest and can be used as a database for the future monitoring program at the site.</p>
|
5 |
USArray Imaging of North American Continental CrustMa, Xiaofei 01 December 2017 (has links)
The layered structure and bulk composition of continental crust contains important clues about its history of mountain-building, about its magmatic evolution, and about dynamical processes that continue to happen now. Geophysical and geological features such as gravity anomalies, surface topography, lithospheric strength and the deformation that drives the earthquake cycle are all directly related to deep crustal chemistry and the movement of materials through the crust that alter that chemistry.
The North American continental crust records billions of years of history of tectonic and dynamical changes. The western U.S. is currently experiencing a diverse array of dynamical processes including modification by the Yellowstone hotspot, shortening and extension related to Pacific coast subduction and transform boundary shear, and plate interior seismicity driven by flow of the lower crust and upper mantle. The midcontinent and eastern U.S. is mostly stable but records a history of ancient continental collision and rifting.
EarthScope’s USArray seismic deployment has collected massive amounts of data across the entire United States that illuminates the deep continental crust, lithosphere and deeper mantle. This study uses EarthScope data to investigate the thickness and composition of the continental crust, including properties of its upper and lower layers. One-layer and two-layer models of crustal properties exhibit interesting relationships to the history of North American continental formation and recent tectonic activities that promise to significantly improve our understanding of the deep processes that shape the Earth’s surface. Model results show that seismic velocity ratios are unusually low in the lower crust under the western U.S. Cordillera. Further modeling of how chemistry affects the seismic velocity ratio at temperatures and pressures found in the lower crust suggests that low seismic velocity ratios occur when water is mixed into the mineral matrix, and the combination of high temperature and water may point to small amounts of melt in the lower crust of Cordillera.
|
6 |
Seismic imaging and monitoring in mines with ambient seismic noise correlations / Etude des perturbations de vitesses sismiques en milieu minier par utilisation des méthodes de corrélation de bruit de fond sismiqueOlivier, Gerrit 02 December 2015 (has links)
Cette thèse s'intéresse au développement des méthodes d'auscultation sismique passive pour l'imagerie et la surveillance des mines profondes. Les résultats marquants sont 1/ la possibilité d'imager en profondeur les structures géologiques d'intérêt et 2/ la possibilité de suivre dans le temps les propriétés mécaniques des roches qui subissent les sollicitation associés à l'exploitation minière. Ce travail ouvre des perspectives quant à l'amélioration de la sécurité dans les mines profondes. / This work focus on using passive noise-based seismic methods to image and monitor the rock mass in underground mines. The main results show that it is possible to gain benefit from the diffuse ambient seismic field in mines to 1/ image the rock mass and 2/ monitor its mechanical property changes over time. This work opens a way to improve safety in deep underground mines.
|
7 |
Multiphase fluid flow in porous media and its effect on seismic velocity / 多孔質媒質中における多相流体流動及び地震波速度へ与える影響に関する研究Yamabe, Hirotatsu 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18938号 / 工博第3980号 / 新制||工||1613(附属図書館) / 31889 / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 松岡 俊文, 教授 後藤 仁志, 准教授 村田 澄彦 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
8 |
Characterizing hydraulic properties of fractured rocks using DFN model and FEMDEM method for tunnelling applications / DFNモデルとFEMDEM法を用いた亀裂性岩盤の水理的性質の特徴抽出とトンネル掘削への応用Wu, Jin 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23491号 / 工博第4903号 / 新制||工||1766(附属図書館) / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 小池 克明, 教授 岸田 潔, 准教授 奈良 禎太 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
9 |
SEISMIC REFLECTION BLANK ZONES IN THE ULLEUNG BASIN, OFFSHORE KOREA, ASSOCIATED WITH HIGH CONCENTRATIONS OF GAS HYDRATEStoian, Iulia, Park, Keun-Pil, Yoo, Dong-Geun, Haacke, R. Ross, Hyndman, Roy D., Riedel, Michael, Spence, George D. 07 1900 (has links)
It has recently been recognized that abundant gas hydrates occur in localized zones of upwelling
fluids, with concentrations much higher than in regional distributions associated with bottomsimulating
reflectors (BSRs). We report a study of multi-channel seismic reflection data across
such structures in the Ulleung Basin, East Sea backarc offshore Korea, an area with few BSRs.
The structures are commonly up to several km across and a few hundred meters in depth extent,
and are characterized by reduced reflectivity and bowed-up sediment reflectors on time-migrated
sections. The seismic pull-up mainly results from higher velocities, although physical
deformation due to folding and faulting is not ruled out. Some of the features extend upward
close to the seafloor and others only partway through the gas hydrate stability zone. The base of
gas hydrate stability zone (BGHSZ), calculated assuming a regional average constant heat flow
of 110 mW/m2, is confirmed by the presence of gas inferred from reduced instantaneous
frequencies and high instantaneous amplitudes, and from a decrease in seismic velocities. The vents are fed by upward migrating free gas or gas-rich fluids through near-vertical conduits
probably due to regional, upward fluid flow caused by tectonic compression of the basin.
|
10 |
Seismic-Reflection and Seismic-Refraction Imaging of the South Portuguese Zone Fold-and-Thrust BeltSchmelzbach, Cedric January 2007 (has links)
The South Portuguese Zone (SPZ), which host world-class massive sulphide deposits, forms the southern fold-and-thrust belt of the Iberian Variscan orogeny. This thesis focuses on seismic-reflection and seismic-refraction processing efforts on a subset of the IBERSEIS deep seismic-reflection data set aiming at resolving the SPZ upper crust in high resolution. A comparison of different crooked-line seismic-reflection imaging schemes showed that a processing sequence involving dip-moveout corrections, a common-midpoint projection, and poststack time migration of common-offset gathers provided the most coherent images considering the crooked acquisition geometry. Correlation with surface-geological data allows four units of different reflection character to be identified: the ~0–2 km deep Upper Carboniferous Flysch group, the highly reflective ~2–4 km thick and up to ~5 km deep Volcano-Sedimentary Complex (VSC) group, and two deep Paleozoic metasedimentary units, with the shallower Phyllite-Quartzite group exposed in an antiform. Prominent diffracted energy was enhanced using a modified Kirchhoff imaging routine. High reflectivity and distinct diffractions mark extensive dike bands at 6–12 km depth, possibly related to the intense hydrothermal activity that led to the formation of the ore-bearing VSC group. Source-generated noise obscures potential signals from depths shallower than ~500m depth on the seismic-reflection sections. P- and SV-wave first-arrival traveltimes were inverted for velocity models imaging the shallowest crust. Overall, the velocity models correlate well with surface-geological data marking high (>5.25 km/s) and uniform P-velocities for the Flysch unit in the southern SPZ. A prominent P-wave low-velocity body (~4.5 km/s) is resolved where the Phyllite-Quartzite unit forms the core of an antiform. P-velocities fluctuate the most in the northern SPZ with Flysch group units exhibiting high velocities (>5.25 km/s) and VSC group bodies showing intermediate velocities (~5 km/s). Low VP/VS-ratios (~1.8) computed for the southern profile part are interpreted as less deformed Flysch-group units, whereas high VP/VS-ratios (~1.9) indicate fractured units.
|
Page generated in 0.0763 seconds