• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 14
  • 4
  • 2
  • 1
  • Tagged with
  • 45
  • 26
  • 19
  • 16
  • 13
  • 12
  • 11
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Das Jungpleistozän und marine Holozän nach seismischen Messungen nordwestlich Eiderstedts, Schleswig-Holstein

Tietze, Gunnar. January 1983 (has links)
Thesis (doctoral)--Christian-Albrechts-Universität zu Kiel, 1983. / Vita. Description based on print version record. Includes bibliographical references (p. 103-115).
12

Neotektonik und Seismizität in Westsachsen und Nordwestböhmen

Sonnabend, Lutz, Rein, Nikolaus, Korn, Michael 14 September 2023 (has links)
Diese Schriftenreihe informiert über die Forschungsergebnisse des Projektes zur Untersuchung der (Schwarm-)Erdbebenregion in Westsachsen. Erstmalig konnte zweifelsfrei die Aktivität von Nord-Süd- verlaufenden Störungszonen in der Region nachgewiesen werden. Es wurden Verfahren aus der globalen Seismologie mit modernsten Methoden auf die lokale Bebentätigkeit übertragen. Die Störungen konnten mit modernen Methoden aktiv erkundet werden. Die Ergebnisse sind von Bedeutung für die Risikobewertung und die Forschung zu Seismologie und Vulkanologie. Die Veröffentlichung richtet sich an Forschende. Redaktionsschluss: 04.01.2022
13

On the origin of seismic signals recorded on Stromboli volcano / Untersuchung zur Ursache der auf dem Vulkan Stromboli registrierten seismischen Signale

Braun, Thomas January 2009 (has links) (PDF)
Hauptaufgabe der Vulkanseismologie ist die qualitative and quantitative Beschreibung einer oder mehrerer unbekannter seismischer Quellen, die sich in einer unbekannten Tiefe unter dem Vulkan befinden. Auch wenn viele Vulkane der Erde ähnliche Signalcharakteristiken aufweisen, war es bis heute nicht möglich, für Vulkane ein seismisches Standard-Quellmodell zu finden, analog dem Double- Couple in der Erdbebenseismologie. Kontinuierlich tätige Vulkane, wie z.B. Stromboli (Italien), stellen für den Vulkanseismologen ein ideales natürliches Feldlabor dar, diese Fragestellung zu untersuchen. Die vorliegende Arbeit untersucht auf Stromboli registrierte Explosionsbeben und vulkanischen Tremor in einem breiten Frequenzband und behandelt die Frage nach der Lage und dem Mechanismus der seismischen Quelle(n). Seismische und Infraschallmessungen von strombolischen Explosionsbeben zeigen, dass sich eine Hochfrequenz-Phase mit einer Geschwindigkeit von etwa 330 m/s fortbewegt. Die seismische Quelle kann durch eine Explosion am oberen Ende der Magmasäule erklärt werden, die durch aufsteigende Gasblasen verursacht wird. Sowohl die seismische P-Welle, als auch die Luftwelle werden zum gleichen Zeitpunkt an ein und demselben Ort generiert. Die verschiedenen Laufwege und Geschwindigkeiten der seismischen und der Luftwelle resultieren in einem Laufzeitunterschied dt, der zur Bestimmung des Magmenstandes und der Schallgeschwindigkeit in der Eruptionss¨aule im Schlotinnern genutzt werden kann. In Kraternähe installierte Stationen zeigen, dass Infraschall- und seismische Messungen des kurzperiodischen Tremors (> 1 Hz) den gleichen Frequenzgehalt und ähnliche Fluktuationen der seismischen Energie aufweisen. Daher wird der kurzperiodische vulkanische Tremor auf Stromboli durch das kontinuierliche Aufsteigen und Platzen kleiner Gasblasen im oberen Teil der Magmasäule verursacht. Das Spektrum des auf Stromboli registrierten langperiodischen Tremors besteht hauptsächlich aus drei Maxima bei 4.8 s, 6 s und 10 s, deren Spektralamplitude mit der jeweiligen Wettersituation variieren. Sie werden daher nicht von einer lokalen vulkanischen Quelle erzeugt, sondern durch Meeresmikroseismik (MMS). Der Durchzug eines lokalen Tiefdruckgebietes scheint die Ursache für Spektralenergie bei 4.8 s and 10 s, die jeweils die Doppelte bzw. die Primäre Frequenz der MMS darstellen. Als Ursache des spektralen Maximums bei 6 s könnte ein Tief nahe der Britischen Inseln in Frage kommen. Seismische Daten, die von dem ersten auf Stromboli installierten Breitband- Array registriert wurden, zeigten überraschend einfache Wellenformen, die einen anfänglich kontraktierenden Quellmechanismus anzeigen. Die Analyse der Partikelbewegung und die Anwendung seismischer Arraytechniken ermöglichten eine Lokalisierung der seismischen Quelle in Oberflächennähe. Die Anwendung verschiedener Inversionsmethoden gestattete es, Eruptionsparameter und Charakteristiken der seismischen Quelle während der Strombolieruption am 5. April 2003 abzuschätzen. Als Ergebnis kann festgehalten werden, dass der paroxystische Ausbruch durch eine langsame Überschiebungsdislokation mit einer Momentenmagnitude von Mw = 3.0 verursacht wurde, ausgelöst durch einen vorher durch Dike-Intrusion verursachten Bruch. Während des Paroxysmus konnte in den seismischen Signalen mindestens eine Blow-out Phase mit einer Momentenmagnitude von Mw = 3.7 identifiziert werden. Diese kann durch einen vertikalen linearen Vektordipol, zwei schwächere horizontale lineare Dipole in entgegengesetzter Richtung, zuzüglich einer Vertikalkraft repräsentiert werden. Seismische Messungen, die während kontrollierter und reproduzierbarer Blowout Experimente unter Verwendung von einem in einer Basaltschmelze eingeschlossenen Gasvolumen durchgeführt wurden, ergaben folgende Ergebnisse: Monochromatische Signale sind Anzeiger für einen Blow-out in einem duktilen Regime, wohingegen ein breitbandigerer Frequenzgehalt auf einen Sprödbruch hinweist. Je grösser die Länge des Schmelztiegels ist, desto schwächer sind die seismischen Signale. Ein grösser Gasdruck bewirkt eine stärkere Fragmentation des Magmas, aber keine höhere Austrittsgeschwindigkeit des Magmapropfens und auch keine grössere seismische Amplitude. Auch wenn die langperiodischen Signale, wie beispielsweise Tilt, im Labor nicht simuliert werden konnten, sind die Blow-out Experimente überraschend gut in der Lage, die am Vulkan Stromboli registrierten kurzperiodischen seismischen Signale zu reproduzieren. / The main purpose of volcano-seismology concerns the qualitative and quantitative description of one or more unknown seismic source(s) located at some unknown depth beneath a volcano. Even if many different volcanoes show similar seismic signal characteristics, up to now it was not possible to find a standard seismic source model for volcanoes, as the double-couple in earthquake seismology. Volcanoes with a continuous activity, like Stromboli (Italy), represent for the volcano seismologist a perfect natural laboratory to address this question. This thesis treats the study of explosion-quakes and volcanic tremor recorded on Stromboli in a broadband frequency range, and discusses the location and the possible mechanisms of the seismic source(s). Seismic and infrasonic recordings of explosion-quake from Stromboli showed that the high-frequency phase propagates with a velocity of approximately 330 m/s. The seismic source can be explained as an explosion at the top of the magma column generated by rising gas bubbles. The seismic P-wave and the air-wave are both generated in the same point at the same time. The different path lengths and velocities for the seismic wave and the air-wave result in a difference in arrival times dt, that could be used to deduce the magma level and sound speed in the eruption column inside the conduit. Stations installed near the active crater reveal that infrasonic and seismic recordings of the short-period tremor (> 1 Hz) share the same spectral content and show similar energy fluctuations. Therefore, the short-period volcanic tremor at Stromboli originates from the continuous out-bursting of small gas bubbles in the upper part of the magmatic column. The spectrum of the long-period tremor recorded at Stromboli consists of three main peaks with periods at 4.8 s, 6 s and 10 s, and amplitudes varying with the regional meteorological situation. Hence, they are not generated by a close volcanic source but rather by ocean microseisms (OMS). The passage of a local cyclone seems to be the seismic source for spectral energy at 4.8 s and 10 s, which represent the Double Frequency and the Primary Frequency of the OMS, respectively. Concerning the 6 s peak, a cyclone near the British Isles could act as a seismic source. Seismic data from the first broadband array deployed on Stromboli showed surprisingly simple waveforms, indicating an initially contracting source mechanism. The analysis of particle motion and the application of seismic array techniques allowed the location of a seismic source in the shallow part of the volcano. Eruption parameters and seismic source characteristics of the April 5, 2003 Stromboli eruption have been estimated using different inversion approaches. The paroxysm was triggered by a shallow slow thrust-faulting dislocation event with a moment magnitude of Mw = 3.0 and possibly associated with a crack that formed previously by dike extrusion. At least one blow-out phase during the paroxysmal explosion could be identified from seismic signals with an equivalent moment magnitude of Mw = 3.7. It can be represented by a vertical linear vector dipole and two weaker horizontal linear dipoles in opposite direction, plus a vertical force. Seismic measurements performed during controlled and reproducible blow-out experiments with a gas volume entrapped in basaltic melt revealed the following: Monochromatic seismic signals suggest a blow-out in a more ductile regime, whereas broader frequency content indicates rupture in a more brittle environment. The longer the crucible, the weaker the seismic signals. An increase in pressure results in a stronger fragmentation, but not in a higher ejection velocity of the plug neither in a higher seismic amplitude. Even if the very long period observations like the tilt signal could not be simulated in the laboratory, the blow-out experiments simulate very well the short-period seismic signals recorded at Stromboli volcano.
14

Tensile source components of swarm events in West Bohemia in 2000 by considering seismic anisotropy

Rößler, Dirk, Krüger, Frank, Rümpker, Georg, Psencik, Ivan January 2006 (has links)
Earthquake swarms occur frequently in West Bohemia, Central Europe. Their occurrence is correlated with and propably triggered by fluids that escape on the earth's surface near the epicentres. These fluids raise up periodically from a seemingbly deep-seated source in the upper mantle. Moment tensors for swarm events in 1997 indicate tensile faulting. However, they were determined under assumption of seismic isotropy although anisotropy can be observed. Anisotropy may obscure moment tensors and their interpretation. In 2000, more than 10,000 swarm earthquakes occurred near Novy Kostel, West Bohemia. Event triggering by fluid injection is likely. Activity lasted from 28/08 until 31/12/00 (9 phases) with maximum ML=3.2. High quality P-wave seismograms were used to retrieve the source mechanisms for 112 events between 28/08/00 and 30/10/00 using > 20 stations. We determine the source geometry using a new algorithm and different velocity models including anisotropy. From inversions of P waves we observe ML<3.2, strike-slip events on steep N-S oriented faults with additional normal or reverse components. Tensile components seem to be evident for more than 60% of the processed swarm events in West Bohemia during the phases 1-7. Being most significant at great depths and at phases 1-4 during the swarm they are time and location dependent. Although tensile components are reduced when anisotropy is assumed they persist and seem to be important. They can be explained by pore-pressure changes due to the injection of fluids that raise up. Our findings agree with other observations e.g. correlation of fluid transport and seismicity, variations in b-value, forcing rate, and in pore pressure diffusion. Tests of our results show their significance.
15

Traveltime residuals at regional and teleseismic distances for SE-Asia

Lipke, Katrin, Zitzmann, Max, Amberger, Manuel, Ehlert, Carsten, Rößler, Dirk, Krüger, Frank, Ohrnberger, Matthias January 2007 (has links)
Traveltime residuals for worldwide seismic stations are calculated. We use P and S waves from earthquakes in SE-Asia at teleseismic and regional distances. The obtained station residuals help to enhance earthquake localisation. Furthermore we calculated regional source dependent station residuals. They show a systematic dependence of the locality of the source. These source dependent residuals reflect heterogenities along the path and can be used for a refinement of earthquake localisation. / Laufzeitresiduen für weltweite seismische Stationen werden berechnet. Wir nutzen P - und S-Wellen von Erdbeben in Südostasien in teleseismischen und regionalen Distanzen. Die so erhaltenen Stationsresiduen helfen, die Lokaliesierung von Erdbeben zu verbessern. Außerdem berechnen wir regional quellabhängige Stationsresiduen. Diese zeigen eine systematische Abhänbgigkeit vom Ort der Quelle. Sie spiegeln Heterogenitäten entlang des Strahlweges wieder und können für eine Verfeinerung der Ersbebenlokaliesierung genutzt werden.
16

Der obere Mantel in der Eifel-Region untersucht mit der Receiver Function Methode / The upper mantle in the region of the Eifel, Germany, analyzed with the receiver function method

Budweg, Martin January 2002 (has links)
Die Eifel ist eines der jüngsten vulkanischen Gebiete Mitteleuropas. Die letzte Eruption ereignete sich vor ungefähr 11000 Jahren. Bisher ist relativ wenig bekannt über die tieferen Mechanismen, die für den Vulkanismus in der Eifel verantwortlich sind. Erdbebenaktivität deutet ebenso darauf hin, dass die Eifel eines der geodynamisch aktivsten Gebiete Mitteleuropas ist. In dieser Arbeit wird die Receiver Function Methode verwendet, um die Strukturen des oberen Mantels zu untersuchen. 96 teleseismische Beben (mb > 5.2) wurden ausgewertet, welche von permanenten und mobilen breitbandigen und kurzperiodischen Stationen aufgezeichnet wurden. Das temporäre Netzwerk registrierte von November 1997 bis Juni 1998 und überdeckte eine Fläche von ungefähr 400x250 km². Das Zentrum des Netzwerkes befand sich in der Vulkaneifel. <br /> Die Auswertung der Receiver Function Analyse ergab klare Konversionen von der Moho und den beiden Manteldiskontinuitäten in 410 km und 660 km Tiefe, sowie Hinweise auf einen Mantel-Plume in der Region der Eifel. Die Moho wurde bei ungefähr 30 km Tiefe beobachtet und zeigt nur geringe Variationen im Bereich des Netzwerkes. Die beobachteten Variationen der konvertierten Phasen der Moho können mit lateralen Schwankungen in der Kruste zu tun haben, die mit den Receiver Functions nicht aufgelöst werden können. Die Ergebnisse der Receiver Function Methode deuten auf eine Niedriggeschwindigkeitszone zwischen 60 km bis 90 km in der westlichen Eifel hin. In etwa 200 km Tiefe werden im Bereich der Eifel amplitudenstarke positive Phasen von Konversionen beobachtet. Als Ursache hierfür wird eine Hochgeschwindigkeitszone vorgeschlagen, welche durch mögliches aufsteigendes, dehydrierendes Mantel-Material verursacht wird. Die P zu S Konversionen an der 410 km Diskontinuität zeigen einen späteren Einsatz als nach dem IASP91-Modell erwartet wird. Die migrierten Daten weisen eine Absenkung der 410 km Diskontinuität um bis zu 20 km Tiefe auf, was einer Erhöhung der Temperatur von bis zu etwa 140° Celsius entspricht. Die 660 km Diskontinuität weist keine Aufwölbung auf. Dies deutet darauf hin, dass kein Mantelmaterial direkt von unterhalb der 660 km Diskontinuität in der Eifel-Region aufsteigt oder, dass der Ursprung des Eifel-Plumes innerhalb der Übergangszone liegt. / The upper mantle in the region of the Eifel, Germany, analyzed with the <i>receiver function</i> method: <br /> The Eifel is the youngest volcanic area of Central Europe. The last eruption occurred approximately 11000 years ago. Little is known about the deep origin and the mechanism responsible for the Eifel volcanic activity. Earthquake activity indicates that the Eifel is one of the most geodynamically active areas of Central Europe. <br /> In this work the <i>receiver function</i> method is used to investigate the upper mantle structure beneath the Eifel. Data from 96 teleseismic events (mb > 5.2) that were recorded by both permanent stations and a temporary network of 33 broadband and 129 short period stations had been analyzed. The temporary network was operating from November 1997 till June 1998 and covered an area of approximately 400x250 km² centered on the Eifel volcanic fields. <br /> The <i>receiver function</i> analysis reveals a clear image of the Moho and the mantle discontinuities at 410 km and 660 km depth. Average Moho depth is approximately 30 km and it shows little variation over the extent of the network. The observed variations of converted waveforms are possibly caused by lateral variations in crustal structure, which could not resolved by it <i>receiver functions</i>. Inversions of data and migrated it receiver functions from stations of the central Eifel array suggest that a low velocity zone is present at about 60 to 90 km depth in the western Eifel region. There are also indications for a high velocity zone around 200 km depth, perhaps caused by dehydration of the rising plume material. The results suggest that P-to-S conversions from the 410-km discontinuity arrive later than in the IASP91 reference model. The migrated data show a depression of the 410 km discontinuity of about 20 km, which correspond to an increase of temperature of about 140° Celsius. The 660 km discontinuity seems to be unaffected. This indicates that no mantel material rises up from directly below the 660 km discontinuity in the Eifel region or the Eifel-Plume has its origin within the transition zone.
17

Recognition and investigation of temporal patterns in seismic wavefields using unsupervised learning techniques

Köhler, Andreas January 2009 (has links)
Modern acquisition of seismic data on receiver networks worldwide produces an increasing amount of continuous wavefield recordings. Hence, in addition to manual data inspection, seismogram interpretation requires new processing utilities for event detection, signal classification and data visualization. Various machine learning algorithms, which can be adapted to seismological problems, have been suggested in the field of pattern recognition. This can be done either by means of supervised learning using manually defined training data or by unsupervised clustering and visualization. The latter allows the recognition of wavefield patterns, such as short-term transients and long-term variations, with a minimum of domain knowledge. Besides classical earthquake seismology, investigations of temporal patterns in seismic data also concern novel approaches such as noise cross-correlation or ambient seismic vibration analysis in general, which have moved into focus within the last decade. In order to find records suitable for the respective approach or simply for quality control, unsupervised preprocessing becomes important and valuable for large data sets. Machine learning techniques require the parametrization of the data using feature vectors. Applied to seismic recordings, wavefield properties have to be computed from the raw seismograms. For an unsupervised approach, all potential wavefield features have to be considered to reduce subjectivity to a minimum. Furthermore, automatic dimensionality reduction, i.e. feature selection, is required in order to decrease computational cost, enhance interpretability and improve discriminative power. This study presents an unsupervised feature selection and learning approach for the discovery, imaging and interpretation of significant temporal patterns in seismic single-station or network recordings. In particular, techniques permitting an intuitive, quickly interpretable and concise overview of available records are suggested. For this purpose, the data is parametrized by real-valued feature vectors for short time windows using standard seismic analysis tools as feature generation methods, such as frequency-wavenumber, polarization, and spectral analysis. The choice of the time window length is dependent on the expected durations of patterns to be recognized or discriminated. We use Self-Organizing Maps (SOMs) for a data-driven feature selection, visualization and clustering procedure, which is particularly suitable for high-dimensional data sets. Using synthetics composed of Rayleigh and Love waves and three different types of real-world data sets, we show the robustness and reliability of our unsupervised learning approach with respect to the effect of algorithm parameters and data set properties. Furthermore, we approve the capability of the clustering and imaging techniques. For all data, we find improved discriminative power of our feature selection procedure compared to feature subsets manually selected from individual wavefield parametrization methods. In particular, enhanced performance is observed compared to the most favorable individual feature generation method, which is found to be the frequency spectrum. The method is applied to regional earthquake records at the European Broadband Network with the aim to define suitable features for earthquake detection and seismic phase classification. For the latter, we find that a combination of spectral and polarization features favor S wave detection at a single receiver. However, SOM-based visualization of phase discrimination shows that clustering applied to the records of two stations only allows onset or P wave detection, respectively. In order to improve the discrimination of S waves on receiver networks, we recommend to consider additionally the temporal context of feature vectors. The application to continuous recordings of seismicity close to an active volcano (Mount Merapi, Java, Indonesia) shows that two typical volcano-seismic events (VTB and Guguran) can be detected and distinguished by clustering. In contrast, so-called MP events cannot be discriminated. Comparable results are obtained for selected features and recognition rates regarding a previously implemented supervised classification system. Finally, we test the reliability of wavefield clustering to improve common ambient vibration analysis methods such as estimation of dispersion curves and horizontal to vertical spectral ratios. It is found, that in general, the identified short- and long-term patterns have no significant impact on those estimates. However, for individual sites, effects of local sources can be identified. Leaving out the corresponding clusters, yields reduced uncertainties or allows for improving estimation of dispersion curves. / Die Anzahl der weltweit kontinuierlich aufzeichnenden seismischen Messstationen ist in den vergangenen Jahren immer weiter angestiegen. Aus diesem Grund steht eine große Menge von seismischen Datensätzen zu Forschungszwecken zur Verfügung. Insbesondere betrifft dies passive Verfahren zur geologischen Strukturerkundung entweder mittels transienter Ereignisse wie Erdbeben oder unter der Verwendung der permanent vorhandenen natürlichen seismischen Bodenunruhe. Die Bearbeitung dieser Daten erfordert neben der klassischen manuellen Seismogrammanalyse verstärkt auch den Einsatz automatischer Detektionssysteme. Mit Hilfe von überwachten Lernverfahren, d.h. unter Verwendung von seismischen Signalen deren Auftreten bekannt ist, ist es möglich, unbekannte Muster zu klassifizieren. Im Gegensatz dazu hatte die vorliegende Arbeit zum Ziel, ein allgemeines, unüberwachtes Verfahren zur quantitativen Zerlegung seismischer Wellenfelder zu entwickeln. Dies wird mittels einer automatischen Clusterung von Seismogrammzeitfenstern bzw. über die Visualisierung von zeitlichen Mustern auf unterschiedlichen Zeitskalen erreicht. Als unüberwachtes Lernverfahren, das neben der Clusterung auch eine einfach interpretierbare Visualisierung hoch-dimensionaler Datensätze über eine zweidimensionale Darstellung ermöglicht, wurde der Self-organizing-map Algorithmus (SOM) gewählt. Für automatische Lernverfahren ist die Parametrisierung der Seismogramme mittels Merkmalsvektoren erforderlich. Im vorliegenden Fall wurden möglichst viele potentielle Wellenfeldmerkmale unter Verwendung von verschiedenen seismischen Einzel- und Mehrstationsanalyseverfahren für aufeinanderfolgende kurze Zeitfenster berechnet. Um eine datenadaptive und effiziente Parametrisierung zu erreichen, wurde darüberhinaus ein quantitatives Auswahlverfahren für geeignete Merkmale entwickelt, das über einen mehrstufigen Filter bestehend aus einem Signifikanztest und einer SOM-basierenden Korrelationsanalyse redundante und irrelevante Eigenschaften aussortiert. Mit den neu implementierten Techniken wurden verschiedene Arten von seismischen Datensätzen unter Berücksichtigung verschiedener seismologischer Fragestellungen bearbeitet. Die Algorithmen und deren Parameter wurden zunächst intensiv und quantitativ mit Hilfe synthetischer Daten getestet und optimiert. Anschließend wurden reale Aufzeichnungen regionaler Erdbeben und vulkanischer Seismizität verwendet. Im ersten Fall konnten geeignete Merkmale zur Detektion und Klassifizierung von Erdbebenwellenphasen gefunden und die Diskriminierung dieser Signale mit Hilfe der SOM-Darstellung untersucht werden. Unter Verwendung des zweiten Datensatzes wurden Cluster typischer vulkano-seismischer Signale am Vulkan Mount Merapi (Java, Indonesien) detektiert, die sich zur Vorhersage von Eruptionen eignen. Beide Anwendungen haben gezeigt, dass, verglichen mit einzelnen Methoden, automatisch gefundene Kombinationen von Merkmalen verschiedener Parametrisierungsverfahren deutlich bessere Klassifizierungsraten zur Folge haben. Zudem können die Erkenntnisse über die Clusterung von seismischen Signalen dazu verwendet werden, verbesserte automatische Klassifizierungssysteme zu entwickeln. Abschließend wurden Aufzeichnungen der natürlichen seismischen Bodenunruhe bearbeitet. Insbesondere konnte der Einfluss kurzzeitiger und längerfristiger Variationen im Wellenfeld auf Methoden zur passiven Strukturerkundung untersucht werden. Es hat sich gezeigt, dass in einzelnen Fällen tageszeitabhängige Muster und lokale seismische Quellen die Ergebnisse negativ beeinflussen können. Die Wellenfeldzerlegung mittels Clusterung hat es erlaubt, diese Signale zu identifizieren und somit von der Analyse auszuschließen.
18

Development of techniques for earthquake microzonation studies in different urban environment

Strollo, Angelo January 2010 (has links)
The proliferation of megacities in many developing countries, and their location in areas where they are exposed to a high risk from large earthquakes, coupled with a lack of preparation, demonstrates the requirement for improved capabilities in hazard assessment, as well as the rapid adjustment and development of land-use planning. In particular, within the context of seismic hazard assessment, the evaluation of local site effects and their influence on the spatial distribution of ground shaking generated by an earthquake plays an important role. It follows that the carrying out of earthquake microzonation studies, which aim at identify areas within the urban environment that are expected to respond in a similar way to a seismic event, are essential to the reliable risk assessment of large urban areas. Considering the rate at which many large towns in developing countries that are prone to large earthquakes are growing, their seismic microzonation has become mandatory. Such activities are challenging and techniques suitable for identifying site effects within such contexts are needed. In this dissertation, I develop techniques for investigating large-scale urban environments that aim at being non-invasive, cost-effective and quickly deployable. These peculiarities allow one to investigate large areas over a relative short time frame, with a spatial sampling resolution sufficient to provide reliable microzonation. Although there is a negative trade-off between the completeness of available information and extent of the investigated area, I attempt to mitigate this limitation by combining two, what I term layers, of information: in the first layer, the site effects at a few calibration points are well constrained by analyzing earthquake data or using other geophysical information (e.g., shear-wave velocity profiles); in the second layer, the site effects over a larger areal coverage are estimated by means of single-station noise measurements. The microzonation is performed in terms of problem-dependent quantities, by considering a proxy suitable to link information from the first layer to the second one. In order to define the microzonation approach proposed in this work, different methods for estimating site effects have been combined and tested in Potenza (Italy), where a considerable amount of data was available. In particular, the horizontal-to-vertical spectral ratio computed for seismic noise recorded at different sites has been used as a proxy to combine the two levels of information together and to create a microzonation map in terms of spectral intensity ratio (SIR). In the next step, I applied this two-layer approach to Istanbul (Turkey) and Bishkek (Kyrgyzstan). A similar hybrid approach, i.e., combining earthquake and noise data, has been used for the microzonation of these two different urban environments. For both cities, after having calibrated the fundamental frequencies of resonance estimated from seismic noise with those obtained by analysing earthquakes (first layer), a fundamental frequency map has been computed using the noise measurements carried out within the town (second layer). By applying this new approach, maps of the fundamental frequency of resonance for Istanbul and Bishkek have been published for the first time. In parallel, a microzonation map in terms of SIR has been incorporated into a risk scenario for the Potenza test site by means of a dedicated regression between spectral intensity (SI) and macroseismic intensity (EMS). The scenario study confirms the importance of site effects within the risk chain. In fact, their introduction into the scenario led to an increase of about 50% in estimates of the number of buildings that would be partially or totally collapsed. Last, but not least, considering that the approach developed and applied in this work is based on measurements of seismic noise, their reliability has been assessed. A theoretical model describing the self-noise curves of different instruments usually adopted in microzonation studies (e.g., those used in Potenza, Istanbul and Bishkek) have been considered and compared with empirical data recorded in Cologne (Germany) and Gubbio (Italy). The results show that, depending on the geological and environmental conditions, the instrumental noise could severely bias the results obtained by recording and analysing ambient noise. Therefore, in this work I also provide some guidelines for measuring seismic noise. / Aufgrund des enormen Wachstums neuer Megastädte und deren Vordringen in gefährdete Gebiete auf der einen Seite sowie der mangelnden Erdbebenvorsorge in vielen Entwicklungsländern auf der anderen Seite sind verbesserte Verfahren für die Beurteilung der Gefährdung sowie eine rasche Umsetzung bei der Raumplanung erforderlich. Im Rahmen der seismischen Gefährdungsabschätzung spielt insbesondere die Beurteilung lokaler Standorteffekte und deren Einfluss auf die durch ein Erdbeben verursachte räumliche Verteilung der Bodenerschütterung eine wichtige Rolle. Es ist daher unabdingbar, mittels seismischer Mikrozonierungsstudien diejenigen Bereiche innerhalb dicht besiedelter Gebiete zu ermitteln, in denen ein ähnliches Verhalten im Falle seismischer Anregung erwartet wird, um daraus eine zuverlässige Basis bei der Risikoabschätzung großer städtischer Gebiete zu erhalten. Aufgrund des schnellen Wachstums vieler Großstädte in Entwicklungsländern ist eine seismische Mikrozonierung zwingend erforderlich, stellt aber auch eine große Herausforderung dar; insbesondere müssen Verfahren verfügbar sein, mit deren Hilfe rasch eine Abschätzung der Standorteffekte durchgeführt werden kann. In der vorliegenden Arbeit entwickle ich daher Verfahren für die Untersuchung in Großstädten, die darauf abzielen, nicht-invasiv, kostengünstig und schnell durchführbar zu sein. Damit lassen sich innerhalb eines relativ kurzen Zeitraums große Gebiete untersuchen, falls der räumlichen Abstand zwischen den Messpunkten klein genug ist, um eine zuverlässige Mikrozonierung zu gewährleisten. Obwohl es eine gegenläufige Tendenz zwischen der Vollständigkeit aller Informationen und der Größe des untersuchten Gebiets gibt, versuche ich, diese Einschränkung durch Verknüpfung zweier Informationsebenen zu umgehen: In der ersten Ebene werden die Standorteffekte für einige Kalibrierungspunkte durch die Analyse von Erdbeben oder mittels anderer geophysikalischer Datensätze (z.B. Scherwellengeschwindigkeitsprofile) bestmöglich abgeschätzt, in der zweiten Ebene werden die Standorteffekte durch Einzelstationsmessungen des seismischen Rauschens für ein größeres Gebiet bestimmt. Die Mikrozonierung erfolgt hierbei mittels spezifischer, fallabhängiger Parameter unter Berücksichtigung eines geeigneten Anknüpfungspunktes zwischen den beiden Informationensebenen. Um diesen Ansatz der Mikrozonierung, der in dieser Arbeit verfolgt wurde, zu präzisieren, wurden in Potenza (Italien), wo eine beträchtliche Menge an Daten verfügbar war, verschiedene Verfahren untersucht. Insbesondere kann das Spektralverhältnis zwischen den horizontalen und vertikalen Seismometerkomponenten, welche für das seismische Rauschen an mehreren Orten aufgenommen wurde, als eine erste Näherung für die relative Verstärkung der Bodenbewegung verwendet werden, um darauf aufbauend die beiden Informationsebenen zu verknüpfen und eine Mikrozonierung hinsichtlich des Verhältnisses der spektralen Intensität durchzuführen. Anschließend führte ich diesen Zwei-Ebenen-Ansatz auch für Istanbul (Türkei) und Bischkek (Kirgisistan) durch. Für die Mikrozonierung dieser beiden Städte habe ich denselben Hybridansatz, der Daten von Erdbeben und von seismischem Rauschen verbindet, verwendet. Für beide Städte wurde nach Gegenüberstellung der Resonanzfrequenz des Untergrunds, die zum einen mit Hilfe des seismischen Rauschens, zum anderen durch Analyse von Erdbebendaten bestimmt worden ist (erste Ebene), eine Karte der Resonanzfrequenz unter Verwendung weiterer Messungen des seismischen Rauschens innerhalb des Stadtgebiets erstellt (zweite Ebene). Durch die Anwendung dieses neuen Ansatzes sind vor kurzem zum ersten Mal auch Karten für die Resonanzfrequenz des Untergrunds für Istanbul und Bischkek veröffentlicht worden. Parallel dazu wurde für das Testgebiet in Potenza eine auf dem spektralen Intensitätsverhältnis (SIR) basierende Mikrozonierungskarte in ein Risikoszenario mittels der Regression zwischen SIR und makroseismischer Intensität (EMS) integriert. Diese Szenariostudie bestätigt die Bedeutung von Standorteffekten innerhalb der Risikokette; insbesondere führt deren Einbeziehung in das Szenario zu einem Anstieg von etwa 50% bei der Zahl der Gebäude, für die ein teilweiser oder gar vollständiger Zusammenbruch erwartet werden kann. Abschließend wurde der im Rahmen dieser Arbeit entwickelte und angewandte Ansatz auf seine Zuverlässigkeit geprüft. Ein theoretisches Modell, das zur Beschreibung des Eigenrauschens verschiedener Instrumente, die in der Regel in Mikrozonierungsstudien (z. B. in Potenza, Istanbul und Bischkek) zum Einsatz kommen, wurde untersucht, und die Ergebnisse wurden mit Daten verglichen, die vorher bereits in Köln (Deutschland) und Gubbio (Italien) aufgenommen worden waren. Die Ergebnisse zeigen, dass abhängig von den geologischen und umgebenden Bedingungen das Eigenrauschen der Geräte die Ergebnisse bei der Analyse des seismischen Rauschens stark verzerren kann. Deshalb liefere ich in dieser Arbeit auch einige Leitlinien für die Durchführung von Messungen des seismischen Rauschens.
19

Rupture propagation of recent large TsE off-coast Sumatra and Java

Rößler, Dirk, Krüger, Frank, Ohrnberger, Matthias January 2007 (has links)
The spatio-temporal evolution of the three recent tsunamogenic earthquakes (TsE) off-coast N-Sumatra (Mw9.3), 28/03/2005 (Mw8.5) off-coast Nias, on 17/07/2006 (Mw7.7) off-coast Java. Start time, duration, and propagation of the rupture are retrieved. All parameters can be obtained rapidly after recording of the first-arrival phases in near-real time processing. We exploit semblance analysis, backpropagation and broad-band seismograms within 30°-95° distance. Image enhancement is reached by stacking the semblance of arrays within different directions. For the three events, the rupture extends over about 1150, 150, and 200km, respectively. The events in 2004, 2005, and 2006 had source durations of at least 480s, 120s, and 180s, respectively. We observe unilateral rupture propagation for all events except for the rupture onset and the Nias event, where there is evidence for a bilateral start of the rupture. Whereas average rupture speed of the events in 2004 and 2005 is in the order of the S-wave speed (≈2.5-3km/s), unusually slow rupturing (≈1.5 km/s) is indicated for the July 2006 event. For the July 2006 event we find rupturing of a 200 x 100 km wide area in at least 2 phases with propagation from NW to SE. The event has some characteristics of a circular rupture followed by unilateral faulting with change in slip rate. Fault area and aftershock distribution coincide. Spatial and temporal resolution are frequency dependent. Studies of a Mw6.0 earthquake on 2006/09/21 and one synthetic source show a ≈1° limit in resolution. Retrieved source area, source duration as well as peak values for semblance and beam power generally increase with the size of the earthquake making possible an automatic detection and classification of large and small earthquakes.
20

Subduction zone structure along Sumatra from receiver functions

Lipke, Katrin, Krüger, Frank, Rößler, Dirk January 2008 (has links)
Receiver functions are a good tool to investigate the seismotectonic structure beneath the a seismic station. In this study we apply the method to stations situated on or near Sumatra to find constraints on a more detailed velocity model which should improve earthquake localisation. We estimate shallow Moho-depths (~ 21 km) close to the trench and depths of ~30 km at greater distances. First evidences for the dip direction of the slab of ~60° are provided. Receiver functions were calculated for 20 stations for altogether 110 earthquakes in the distance range between 30° and 95° from the receiver. However the number of receiver functions per station is strongly variable as it depends on the installation date, the signal-to-noise-ratio of the station and the reliability of the acquisition. / Receiver Funkttion stellen eine gut Methode zur Untersuchung von Seismotektonischen Strukturen unterhalb einer seismischen Station dar. In dieser Arbeit wenden wir die Methode auf Station auf oder nahe Sumatra an um Hinweise für ein detaillierteres Geschwindigkeitsmodell zu erhalten, welches die Lokalisierung von Erdbeben verbessern sollte. Wir ermitteln flache Moho-Tiefen (~21 km) in der Nähe des Trenchs und Tiefen um die 30 km in größeren Distanzen. Erste Hinweise für eine Einfallsrichtung des Slabs von ~60° konnten gefunden werden. Receiver Funktionen wurden für 20 Stationen für insgesamt 110 Erdbeben im Distanzbereich zwischen 30° und 95° berechnet. allerdings ist die Anzahl von Receiver Funktionen pro Station sehr variabel, da sie vom Installationszeitpunkt, dem Signal-Rausch-Verhältnis und der Zuverlässigkeit der Datenaufnahme an der Station abhängt.

Page generated in 0.042 seconds