• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 92
  • 15
  • 10
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 152
  • 41
  • 37
  • 33
  • 32
  • 30
  • 26
  • 25
  • 24
  • 22
  • 22
  • 20
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Development of a High Precision Quantum Dot Synthesis Method Utilizing a Microfluidic Reactor and In-Line Fluorescence Flow Cell

Lafferty, William Henry 01 November 2014 (has links) (PDF)
Quantum dots show great potential for use as spectral converters in solar cells, lighting applications, and biological imaging. These applications require precise control of quantum dot size to maximize performance. The quality, size, and fluorescence of quantum dots depend on parameters that are difficult to control using traditional batch synthesis processes. An alternative, high precision process was developed for the synthesis of cadmium-selenide quantum dots using a microfluidic reactor and fluorescence flow cell. The process required creating separate cadmium and selenium precursors that were then mixed in a nitrogen environment at 17°C. Using an NE-300® syringe pump, the solution was pumped through a microfluidic reactor submerged in a 240°C oil bath. The reactor then fed through a water quench bath at 25°C to terminate the nucleation and growth reaction. The fluorescence profiles of the quantum dot solutions were then characterized with an in-line fluorescence flow cell used in conjunction with an Ocean Optics® USB4000® spectrometer and a ThorLabs® LED UV light source. Flow rates through the reactor were varied from 0.05ml/min to 2ml/min. A central peak wavelength was registered in the fluorescence profiles for each flow rate. Monodisperse Cd-Se quantum dot solutions were synthesized across a broad spectrum of wavelengths ranging from 490nm to 620nm. An empirical relationship between flow rate and center wavelength was determined.
82

Solution Assembly of Conjugated Polymers

Bokel, Felicia 01 May 2013 (has links)
This dissertation focuses on the solution-state polymer assembly of conjugated polymers with specific attention to nano- and molecular-scale morphology. Understanding how to control these structures holds potential for applications in polymer-based electronics. Optimization of conjugated polymer morphology was performed with three objectives: 1) segregation of donor and acceptor materials on the nanometer length-scale, 2) achieving molecular-scale ordering in terms of crystallinity within distinct domains, and 3) maximizing the number and quality of well-defined donor/acceptor interfaces. Chapter 1 introduces the development of a mixed solvent method to create crystalline poly(3-hexyl thiophene) (P3HT) fibrils in solution. Chapter 2 describes fibril purification and approaches to robust and functional fibrils, while chapters 3 and 4 demonstrate the formation of hybrid nanocomposite wires of P3HT and cadmium selenide (CdSe) nanoparticles by two methods: 1) co-crystallization of free and P3HT-grafted CdSe for composite nanowires and 2) direct attachment of CdSe nanoparticles at fibril edges to give superhighway structures. These composite structures show great potential in the application of optoelectronic devices, such as the active layer of solar cells. Finally, ultrafast photophysical characterization of these polymers, using time-resolved photoluminescence and transient absorption, was performed to determine the aggregation types present in suspended fibrils and monitor the formation and decay of charged species in fibrils and donor-acceptor systems
83

THE DETECTION OF SHORT-LIVED REACTION INTERMEDIATES IN SOLUTION, CHARACTERIZATION OF METAL COMPLEXES, AND THE CONFORMATIONAL CHANGE OF 1-BROMOPROPANE UPON BINDING TO ΑLPHA-CYCLODEXTRIN

Victoria Boulos (14228024) 07 December 2022 (has links)
<p>  </p> <p>The development of a novel technique employing the use of a linear quadrupole ion trap mass spectrometer coupled to a Nd:YAG laser and a home-built fast reagent-mixing apparatus is detailed and used to detect the short-lived tetrahedral reaction intermediate of the reaction of acetyl chloride with ethanol in microdroplets. Additionally, tandem and high-resolution mass spectrometry is used to characterize potential precursors for solution-processed metal selenide semiconductors in order to determine a synthetic route to sulfur-free thin films. Lastly, Raman MCR (multivariate curve resolution) spectroscopy is used to study the binding-induced conformational change of 1-bromopropane upon binding to α-cyclodextrin as a model system to examine guest conformational changes upon binding to a host molecule.</p>
84

Fabrication of Binary Quantum Solids From Colloidal Semiconductor Quantum Dots

Schmall, Nicholas Edward 29 July 2009 (has links)
No description available.
85

Thermoelectric properties of rare-earth lead selenide alloys and lead chalcogenide nanocomposites

Thiagarajan, Suraj Joottu 11 December 2007 (has links)
No description available.
86

High Figure of Merit Lead Selenide Doped with Indium and Aluminum for Use in Thermoelectric Waste Heat Recovery Applications at Intermediate Temperatures

Evola, Eric G. 25 June 2012 (has links)
No description available.
87

Deterministic localization and modulation of single photon emitters in multilayer gallium selenide

Luo, Weijun 23 July 2024 (has links)
Single-photon emitters (SPEs) are quantum systems that can produce individual photons when excited. These photons can be manipulated in their polarization states to encode quantum bits, which are the quantum-mechanical analogs of classical bits. SPEs are critical to the development of quantum information technology applications, including quantum communication, computing, and sensing. Despite their importance, there are currently no solid-state SPEs that meet the requirements for large-scale applications. Researchers have explored various materials hosts, including quantum dots, carbon nanotubes, and bulk semiconductors, but many challenges remain. For example, producing scalable and integrated SPEs with tunable wavelengths, high clocking rates (brightness), and single-photon purity at room temperature is still an ongoing research goal. In recent years, there has been significant research interest in single-photon emitters (SPEs) in two-dimensional (2D) Van der Waals (VdW) materials. Most research in this area has focused on SPEs in multilayer insulating hexagonal boron nitride (hBN), which can be operated at room temperature, and monolayer tungsten diselenide (WSe2), which is a direct bandgap semiconductor. The SPEs in hBN are derived from defect emission, while those in monolayer WSe2 stem from either defect or strain-bound excitons. Despite this promising research, there are critical challenges that impede the development of these SPEs. For example, hBN is an insulator with a band gap of 6.0 eV, which limits electrical control, and controlling defects is difficult. Additionally, the photo-stability of monolayer WSe2 is vulnerable to environmental fluctuations, such as surface contaminants. Multilayer gallium selenide (GaSe) is another 2D Van der Waals (VdW) SPE host, and the initial experimental observation of GaSe SPEs was reported by Tonndorf. et al. in 2017.2,3 However, GaSe SPEs have received less attention compared to hBN and WSe2 for several reasons. Firstly, early reports2,3 show that GaSe SPEs arising from defects are less brighter than SPEs in WSe24 and hBN.5 Secondly, increasing the laser power for brighter GaSe SPEs would cause the formation of biexcitons, which degrades the single photon purity.2 Since 2017, to the best of our knowledge, there have been no further experimental studies conducted on overcoming those challenges to improve the performances of GaSe SPEs. In this dissertation, I present three research projects focused on addressing the challenges of developing single-photon emitters (SPEs) in multilayer gallium selenide (GaSe). First, I achieved localized bright and stable GaSe SPEs in multilayer GaSe through the manipulation of nanoscale strain. Second, I performed below-diffraction limit hyperspectral imaging of strain-localized GaSe SPEs through cathodoluminescence and demonstrated the wide spectral range tunability, significant enhancement of emission intensities controlled by nanoscale strain, as well as the robust spectral stability of GaSe SPEs. In the last project, I demonstrated a 30%-50% improvement in emission intensities of GaSe, converted non-SPEs to SPEs, and increased operating temperatures from 23 K up to 85K above cryogenic temperature through electrostatic doping. The research works in this dissertation lays a crucial foundation for future fundamental studies and the development of GaSe SPEs and their analogues.
88

Near-Infrared Cu-In-Se-Based Colloidal Nanocrystals via Cation Exchange

Lox, Josephine F. L., Dang, Zhiya, Dzhagan, Volodymyr, Spittel, Daniel, Martín-García, Beatriz, Moreels, Iwan, Zahn, Dietrich R.T., Lesnyak, Vladimir 17 December 2019 (has links)
We developed a three-step colloidal synthesis of near-infrared active Cu-In-Se (CISe)/ZnS core/shell nanocrystals (NCs) via a sequential partial cation exchange. In the first step binary highly copper deficient Cu2‒xSe NCs were synthesized, followed by a partial cation exchange of copper to indium ions yielding CISe NCs. In order to enhance the stability and the photoluminescence (PL) properties of the NCs, a subsequent ZnS shell was grown, resulting in CISe/ZnS core/shell NCs. These core/shell hetero-NCs exhibited a dramatic increase in size and a restructuring to trigonal pyramidal particles. The reaction parameters, e.g. the Cu:Se-ratio, the temperature and the time were carefully tuned enabling a distinct control over the size and the composition of the NCs. By varying only the size of the CISe/ZnS NCs (from 9 to 18 nm) the PL spectra could be tuned covering a wide range with maxima from 990 nm to 1210 nm. Thus, in these experiments we demonstrate a clear dependence of the optical properties of these materials on their size and extend the PL range of CISe-based nanoparticles further to the infrared part of the spectrum. Furthermore, the relatively large size of these NCs allows their detailed structural analysis via electron microscopy techniques, which is particularly challenging in the case of small particles and especially important to relate the size, composition and crystal structure to their optoelectronic properties.
89

Structure and Transport in Nanocrystalline Cadmium Selenide Thin Films

Norman, Zachariah Mitchell January 2015 (has links)
This thesis explores colloidal semiconductor nanocrystal solutions as a feedstock for creating thin film semiconductor materials through printing processes. This thesis will span the synthesis of nanocrystals, ligand exchange chemistry, solution phase characterization methods, thin film device fabrication, thin film characterization methods, and device characteristics. We will focus extensively relating the structure of nanocrystals in solution and in thin films to their chemistry, optical properties and electronic properties. By way of introduction, the origin and nature of semiconductor nanocrystals will be explored. This discussion will place semiconductor nanocrystals in their historical context, namely the oil-shocks of the 1970s. The interest in II-VI semiconductor materials stemmed from a desire find photochemical synthetic routes to reduce the use of fossil fuels. As a result, II-VI semiconductor nanocrystal are far more developed synthetically. Additionally, our understanding of II-VI semiconductor nanocrystals is couched in the language of solid state physics rather than chemistry. This will lead into a discussion of their electronic structure and the iterative nature of nanocrystal synthetic development and our theoretical understanding of nanocrystals. The first chapter will discuss nanocrystal synthetic methods in a broad context, finally narrowing in on the synthesis chosen for this work. Following a description of the synthesis, we will then describe the ligand chemistry and the reactions which may be performed in the ligand shell. The final sections of the chapter will describe the synthetic routes to the three nanocrystal materials used in the rest of this work, namely CdSe-CdCl2/PBu3, CdSe-CdCl2/NH2Bu, and CdSe/NH2Bu. The second chapter will introduce the crystal structure of II-VI semiconductor nanocrystals and describe how the structure is measured. This will lead in to a discussion of pair distribution function analysis of X-ray data and examples of its application to the solution phase structure of semiconductor nanocrystals. Some size dependent structural properties, namely stain, will be demonstrated by PDF. At the end evidence for surface reconstruction in solution as ligands are removed will be presented. In the final chapter, techniques for film formation and ligand dissolution with be presented. Annealing of films produces electronic and structural changes which can be observed in the absorbance spectrum, electron microscopy, and X-ray scattering. I propose a three phase annealing model which includes 1) reversible desorption of the organic ligands, 2) irreversible particle fusion, and 3 ripening of grains. The temperature at which ripening occurs depends sensitively on the sample content, which increase chloride concentration decreasing the temperature at which ripening occurs. The ripening process is found to correlate with a phase transition from zinc blende to wurtzite, which indicates that grain boundary mobility is an important part of the ripening process. Finally thin film transistors are characterized electronically. Fused grains show superior electron mobility as high as 25 cm2/(Vs) and on/off ratios of 10\up5 and less than 0.5 V hysteresis in threshold voltage without the addition of indium. Surprisingly, the ripened grains show poorer transport characteristics. The manuscript concludes by noting the importance of the sintering process in achieving conductivity in thin films and discussing future directions to build upon this work.
90

Growth and optical properties of ZnS and ZnSSe nanostructures. / Growth and optical properties of zinc sulfide and zinc sulfoselenide nanostructures / ZnS和ZnSSe納米結構的生長和光學性質 / CUHK electronic theses & dissertations collection / Growth and optical properties of ZnS and ZnSSe nanostructures. / ZnS he ZnSSe na mi jie gou de sheng chang he guang xue xing zhi

January 2009 (has links)
In addition, we have studied the growth conditions and the properties of ZnSSe alloy nano-tetrapods grown by chemical vapor deposition. Different from the ZnSSe nanowires synthesized by MOCVD, the ZnSSe nano-tetrapods are of hexagonal structure. We observed a wavelength-tunable near band gap luminescence in the UV-blue region from this nanostructurally-designed system. / Recently, semiconductor nanostructures have attracted much attention because they are potentially useful as fundamental building blocks in nanodevices. As an important member of group II-VI semiconductors, ZnS and its alloys with ZnSe are particularly important for optical applications in the UV-blue region . Thus, we concentrated on the synthesis of ZnS, ZnSe and ZnSSe nanostructures and studied their optical properties. / Vertically-aligned ZnSe nanowires were also synthesized by MOCVD using Ag and Ga nanoparticles as catalysts. In the photoluminescence spectra from Ag or Ga catalyzed ZnSe nanowires, we observed recombination of excitons bound to substitutional Ag or Ga impurities respectively, which indicates that Ag and Ga have been doped into ZnSe nanowires in our experiments. / We are among the first group to grow vertically well-aligned ZnSSe alloy nanowires of controllable composition. Most of ZnSSe nanowires were found to have a cubic structure. We also found a compositional relationship between the nanowires and precursors, which is useful for predicting the lattice constant and band-gap emission energy of ZnSSe nanowires. / ZnS nanowire arrays were fabricated on the GaAs (100), (110) (311)A and (111)B substrates by metal organic chemical vapor deposition (MOCVD) using Ag, Au and Ga particles as catalysts. Their orientation was adjusted by changing the crystallographic orientation of the substrate. Moreover, Ga was doped into ZnS nanowires, when Ga nanoparticles serve as catalysts. / Liang, Yao = ZnS和ZnSSe納米結構的生長和光學性質 / 梁瑤. / Adviser: Hank Suikong. / Source: Dissertation Abstracts International, Volume: 72-11, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Liang, Yao = ZnS he ZnSSe na mi jie gou de sheng chang he guang xue xing zhi / Liang Yao.

Page generated in 0.0523 seconds