51 |
The electrical and optical characterization of MOCVD grown GaAs: ZnSe heterojunctions /Rochemont, Pierre de January 1986 (has links)
No description available.
|
52 |
NANOMATERIALS-BASED SENSORS FOR PEROXYNITRITE DETECTION AND QUANTIFICATIONKalil, Haitham Fawzy Mohamed January 2017 (has links)
No description available.
|
53 |
Colloidal Semiconductor Nanocrystals: A Study of the Syntheses of and Capping Structures for CdSeHerz, Erik 20 August 2003 (has links)
Luminescent quantum dots (QDs) or rods are semiconductor nano-particles that may be used for a wide array of applications such as in electro-optical devices, spectral bar coding, tagging and light filtering. In the case under investigation, the nano-particles are cadmium-selenide (CdSe), though they can be made from cadmium-sulfide, cadmium-telluride or a number of other II-VI and III-V material combinations. The CdSe quantum dots emit visible light at a repeatable wavelength when excited by an ultraviolet source. The synthesis of colloidal quantum dot nanoparticles is usually an organo-metallic precursor, high temperature, solvent based, airless chemical procedure that begins with the raw materials CdO, a high boiling point ligand, and a Se-trioctylphosphine conjugate. This investigation explores the means to produce quantum dots by this method and to activate the surface or modify the reaction chemistry with such molecules as trioctylphosphine oxide, stearic acid, dodecylamine, phenyl sulfone, aminophenyl sulfone, 4,4'dichlorodiphenyl sulfone, 4,4'difluorodiphenyl sulfone, sulfanilamide and zinc sulfide during the production to allow for further applications of quantum dots involving new chemistries of the outer surface. Overall, the project has been an interesting and successful one, producing a piece of equipment, a lot of ideas, and many dots with varied capping structures that have been purified, characterized, and stored in such a way that they are ready for immediate use in future projects. / Master of Science
|
54 |
Real Time Spectroscopic Ellipsometry (RTSE) Analysis of Three Stage CIGS Deposition by co-EvaporationPradhan, Puja January 2017 (has links)
No description available.
|
55 |
Nanostructured Bulk Thermoelectrics : Scalable Fabrication Routes, Processing and EvaluationYakhshi Tafti, Mohsen January 2016 (has links)
Current fossil fuel based energy sources have a huge shortcoming when one discusses their efficiency. The conversion efficiency of fossil fuel-based technologies is less than 40% in best cases. Therefore, until the renewable energy section is mature enough to handle all the energy demand one has to research and develop the technologies available to harvest the energy from the waste heat generated in fossil fuel-based supply sources. One of these emerging technologies is the use of thermoelectric (TE) devices to achieve this goal, which are solid-state devices capable of directly interconverting between heat and electrical energy. In the past decade there has been a significant scientific and financial investment within the field to enhance their properties and result in time/energy efficient fabrication processes of TE materials and devices for a more sustainable environment. In this thesis with use of chemical synthesis routes for nanostructured bulk thermoelectric materials iron antimonide (FeSb2), skutterudites (based on general formula of RzMxCo1-xSb3-yNy) and copper selenide (Cu2Se) are developed. These materials are promising candidates for use in thermoelectric generators (TEG) or for sensing applications. Using chemical synthesis routes such as chemical co-precipitation, salt melting in marginal solvents and thermolysis, fabrication of these TE materials with good performance can be performed with high degree of reproducibility, in a much shorter time, and easily scalable manner for industrial processes. The TE figure of merit ZT of these materials is comparable to, or better than their conventional method counterparts to ensure the applicability of these processes in industrial scale. Finally, through thorough investigation, optimized consolidation parameters were generated for compaction of each family of materials using Spark Plasma Sintering technique (SPS). As each family of TE nanomaterial investigated in this thesis had little to no prior consolidation literature available, specific parameters had to be studied and generated. The aim of studies on compaction parameters were to focus on preservation of the nanostructured features of the powder while reaching a high compaction density to have positive effects on the materials TE figure of merit. / Dagens fossilbränslebaserade energikällor har en enorm brist gällande effektivitet. Effektiviteten av fossilbränslebaserade teknologiers omvandling är mindre än 40 % i bästa fall. Därför tills förnybar energi är mogen nog att hantera alla energibehov, måste man forska och utveckla teknik för att skörda energi från spillvärme i fossilbränslebaserade försörjningskällor. En av dessa nya tekniker är tillämpning av termoelektriska (TE) material för att uppnå målet. Nämnde material är Soldi-State materialer som kan transformera mellan värme och elektrisk energi. Under det senaste decenniet har det pågått en stor vetenskaplig och ekonomisk investering inom området för att förbättra termoelektriska materials egenskaper. Dessutom ville man ta fram tid/energieffektiva TE material och komponenter för en mer hållbar miljö. I denna avhandling utvecklades och producerades termoelektriska material såsom järn antimonid (FeSb2), skutterudit (baserat på allmänna formeln RzMxCo1-xSb3-YNY) och koppar selenid (Cu2Se) med hjälp av kemiska syntesmetoder. Genom att Använda kemiska syntesmetoder som kemisk samutfällning, salt smältning i marginella lösningsmedel och termolys, kan material med hög grad av reproducerbarhet och ställbar för industriella processer tillverkas. Termoelektrisk omvandling effektivitet hos uppnådde material är betydligt högre än resultat av andra studier. I och med detta kan man säga att materialet kan användas inom industri. Slutligen, genom en grundlig undersökning optimerades packningsparametrar som genererades för packning av varje materialgrupp med hjälp av Spark Plasma Sintring teknik (SPS). Eftersom ingen relevant studie finns för varje grupp av termoelektriska nanomaterial som undersökts i denna avhandling, studerades och genererades dessa specifika parametrar. Syftet med studien är att fokusera på bevarande av nanostrukturerade egenskaperna hos pulvret och att samtidigt nå en hög packningstäthet för att ha positiva effekter på materialens termoelektriska omvandlingseffektivitet. / <p>QC 20160503</p> / NEXTEC / SCALTEG
|
56 |
Compact high-repetition-rate terahertz source based on difference frequency generation from an efficient 2-μm dual-wavelength KTP OPOMei, Jialin, Zhong, Kai, Wang, Maorong, Liu, Pengxiang, Xu, Degang, Wang, Yuye, Shi, Wei, Yao, Jianquan, Norwood, Robert A., Peyghambarian, Nasser 03 November 2016 (has links)
A compact optical terahertz (THz) source was demonstrated based on an efficient high-repetition-rate doubly resonant optical parametric oscillator (OPO) around 2 mu m with two type-II phase-matched KTP crystals in the walk-off compensated configuration. The KTP OPO was intracavity pumped by an acousto-optical (AO) Q-switched Nd:YVO4 laser and emitted two tunable wavelengths near degeneracy. The tuning range extended continuously from 2.068 mu m to 2.191 mu m with a maximum output power of 3.29 W at 24 kHz, corresponding to an optical-optical conversion efficiency (from 808 nm to 2 mu m) of 20.69%. The stable pulsed dual-wavelength operation provided an ideal pump source for generating terahertz wave of micro-watt level by the difference frequency generation (DFG) method. A 7.84-mm-long periodically inverted quasi-phase-matched (QPM) GaAs crystal with 6 periods was used to generate a terahertz wave, the maximum voltage of 180 mV at 1.244 THz was acquired by a 4.2-K Si bolometer, corresponding to average output power of 0.6 mu W and DFG conversion efficiency of 4.32x10(-7). The acceptance bandwidth was found to be larger than 0.35 THz (FWHM). As to the 15-mm-long GaSe crystal used in the type-II collinear DFG, a tunable THz source ranging from 0.503 THz to 3.63 THz with the maximum output voltage of 268 mV at 1.65 THz had been achieved, and the corresponding average output power and DFG conversion efficiency were 0.9 mu W and 5.86x10(-7) respectively. This provides a potential practical palm-top tunable THz sources for portable applications.
|
57 |
Photoluminescent properties of annealed ZnCdSe epitaxial layers on InP substrates =: 磷化銦上鋅鎘硒外延層退火處理後的光致發光性質. / 磷化銦上鋅鎘硒外延層退火處理後的光致發光性質 / Photoluminescent properties of annealed ZnCdSe epitaxial layers on InP substrates =: Lin hua yin shang xin ke xi wai yan ceng tui huo chu li hou de guang zhi fa guang xing zhi. / Lin hua yin shang xin ke xi wai yan ceng tui huo chu li hou de guang zhi fa guang xing zhiJanuary 1998 (has links)
by Wong Kin Sang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 61-62). / Text in English; abstract also in Chinese. / by Wong Kin Sang. / Table of contents --- p.I / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Interest in ZnxCd1-x Se/InP --- p.1 / Chapter 1.2 --- Conditions of thermal annealing --- p.2 / Chapter 1.3 --- Advantages of using photoluminescence (PL) --- p.3 / Chapter 1.4 --- Our work --- p.4 / Chapter Chapter 2 --- Experimental setup and procedures / Chapter 2.1 --- PL measurements --- p.6 / Chapter 2.1.1 --- Setup --- p.6 / Chapter 2.1.2 --- Types of PL measurements --- p.6 / Chapter 2.2 --- Annealing experiments --- p.8 / Chapter 2.2.1 --- Setup --- p.8 / Chapter 2.2.2 --- Types of annealing --- p.10 / Chapter 2.2.3 --- Procedures --- p.11 / Chapter Chapter 3 --- Results and discussions / Chapter 3.1 --- Room temperature PL studies of ZnxCd1-xSe/InP --- p.12 / Chapter 3.1.1 --- As-grown ZnxCd1-x Se/InP --- p.12 / Chapter 3.1.1.1 --- Peak energy vs concentration --- p.12 / Chapter 3.1.2 --- Annealing studies --- p.15 / Chapter 3.1.2.1 --- Isothermal annealing --- p.15 / Chapter 3.1.2.2 --- Isochronal annealing --- p.20 / Chapter 3.2 --- PL studies of ZnxCd1-xSe/InP at 10 K temperature --- p.22 / Chapter 3.2.1 --- As-grown ZnxCd1-xSe/InP --- p.22 / Chapter 3.2.1.1 --- Excitation power density dependence --- p.22 / Chapter 3.2.1.2 --- Peak energy vs Zn concentration --- p.26 / Chapter 3.2.2 --- Annealing studies --- p.29 / Chapter 3.2.2.1 --- Isothermal annealing --- p.29 / Chapter 3.2.2.2 --- Isochronal annealing --- p.33 / Chapter 3.3 --- Temperature dependent PL studies of ZnxCd1-xSe/InP --- p.37 / Chapter 3.3.1 --- As-grown ZnxCd1-xSe/InP --- p.37 / Chapter 3.3.1.1 --- Peak energy vs temperature --- p.37 / Chapter 3.3.1.2 --- Peak width vs temperature --- p.46 / Chapter 3.3.2 --- Annealing studies --- p.50 / Chapter 3.3.1.1 --- Peak energy vs temperature --- p.50 / Chapter 3.3.1.2 --- Peak width vs temperature --- p.55 / Chapter Chapter 4 --- Conclusions --- p.59 / References --- p.61
|
58 |
Optical and minority carrier confinement in lead selenide homojunction lasers.Asbeck, Peter Michael January 1975 (has links)
Thesis. 1975. Ph.D.--Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. / Vita. / Includes bibliographical references. / Ph.D.
|
59 |
Using atomically precise clusters to model materialsBeecher, Alexander Nathaniel January 2016 (has links)
Using two different model systems, this thesis considers the old, but fascinating question: how do atoms or particles possessing a particular set of individual characteristics combine to form assemblies with quite distinct, ensemble characteristics, and how do those characteristics evolve as a function of the size of the assembly? For the last thirty years, numerous experiments studying the emergence of collective material properties have focused on a class of semiconducting, colloidal nanocrystals commonly known as quantum dots, which are notable for the size-dependence of their optical properties. Despite years of effort, even the most uniform quantum dot samples possess some heterogeneity in size, shape, and composition, which has prevented complete structure determination and hindered understanding of structure-property relationships. Chapter 1 of this thesis presents an approach to overcoming this challenge and reports the synthesis of a set of four, new, atomically precise cadmium selenide nanocrystal samples, which we call CdSe(350 nm), CdSe(380 nm), CdSe(408 nm), and CdSe(435 nm) after their lowest energy absorption features. We determine their structures and formulas through a combination of single crystal and powder X-ray diffraction measurements, elemental analysis, and spectroscopy. We also describe the optical properties of these samples and their sensitivity to ligand coverage, compare them to other previously reported cadmium selenide nanomaterials, and discuss ongoing experiments.
Because CdSe(350 nm), CdSe(380 nm), CdSe(408 nm), and CdSe(435 nm) are atomically precise, they allow us to correlate specific structural features with material properties, which is the focus Chapter 2. Here we present a series of Raman scattering experiments designed to probe the evolution of vibrational structure with size. We find that the Cd-Se stretching region of the Raman spectra exhibits two peaks, which are assigned to primarily surface-derived and interior-derived atomic motions using density functional theory calculations. By performing variable temperature measurements, we discover that the smallest sample, CdSe(350 nm), exhibits behavior that can be well-described using a model developed for small molecules while the vibrations of the largest measured cluster, CdSe(408 nm), are better described by a model developed for bulk materials. This observation is evidence that the transition to a more bulk-like vibrational structure occurs relatively rapidly when cadmium selenide materials are approximately 2 nm in size.
The emergence of collective material properties is also the subject of Chapter 3, but the topic is approached from a different perspective. Instead of focusing on a series of atomically precise clusters that differ in size, Chapter 3 presents a series of molecules composed of atomically precise clusters. We prepare octahedral hexaruthenium carbonyl clusters, [Ru₆C(CO)₁₆]²⁻, and use them as building blocks to assemble oligomers linked by single metal atom bridges. We synthesize and structurally characterize a set of compounds varying in length (from monomer to trimer) and linker atom identity (cadmium and mercury) and study the effect on electronic structure using infrared and UV-Visible absorption spectroscopies and density functional theory calculations. With increasing oligomer length, the UV-Vis absorption profile changes and shifts to lower energy, which we attribute in part to the development of coupling between neighboring clusters. Our calculations show that the infinite polymer composed of [Ru₆C(CO)₁₆]²⁻ linked by Hg²⁺ would be a one-dimensional semiconductor with a 1.5 eV direct band-gap.
More detailed abstracts can be found at the beginning of each chapter.
|
60 |
I-III-VI₂ and II-VI/I-III-VI₂ Alloyed nanocrystals and their heterostructures: synthesis, characterization and potential applications. / I-III-VI₂χχχII-VI和I-III-VI₂χχχχχχχχχχχχχχχ: 合成, 表征以及潛在应用 / CUHK electronic theses & dissertations collection / I-III-VI₂ and II-VI/I-III-VI₂ Alloyed nanocrystals and their heterostructures: synthesis, characterization and potential applications. / I-III-VI₂ zu yi ji II-VI he I-III-VI₂ zu fu he na mi cai liao he tuo men de yi zhi jie gou: he cheng, biao zheng yi ji qian zai ying yongJanuary 2011 (has links)
Xu, Yeming = I-III-VI₂χχχII-VI和I-III-VI₂χχχχχχχχχχχχχχχ : 合成, 表征以及潛在应用 / 徐業明. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 130-134). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Xu, Yeming = I-III-VI₂ zu yi ji II-VI he I-III-VI₂ zu fu he na mi cai liao he tuo men de yi zhi jie gou : he cheng, biao zheng yi ji qian zai ying yong / Xu Yeming.
|
Page generated in 0.0318 seconds