• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 385
  • 244
  • 51
  • 31
  • 22
  • 22
  • 22
  • 22
  • 22
  • 22
  • 20
  • 20
  • 9
  • 7
  • 7
  • Tagged with
  • 943
  • 198
  • 84
  • 68
  • 64
  • 62
  • 55
  • 55
  • 53
  • 50
  • 50
  • 49
  • 48
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Microbial and Geochemical aspects of Selenium cycling in an Estuarine system: Lake Macquarie N.S.W.

Carroll, Brett Ian January 1999 (has links)
ABSTRACT This work examined the role of micro-organisms in the biogeochemical cycling of selenium within the benthic ecosystem of Lake Macquarie, a coastal lake in New South Wales with a history of anthropogenic heavy metal contamination. Certain micro-organisms possess the ability to oxidise or reduce selenium (Fleming and Alexander, 1973; Doran and Alexander, 1977), and microbial volatilisation of selenium from contaminated sediments and soils utilising naturally-occurring microflora has been shown in overseas research (Thompson-Eagle and Frankenberger, 1992) to be a potentially effective remediation strategy. In examining the impact of micro-organisms upon the oxidation state of selenium in Lake Macquarie sediments, this work also investigated and characterised selenium (and heavy metal) concentrations, speciation and geochemical phase associations (an indicator of potential bioavailability) in the sediments. Seven distinct bacterial species indigenous to Lake Macquarie were identified in this work with the ability to reduce selenium as selenite to elemental selenium, and selenium as selenate to organic forms of selenium, including volatile methylated selenium compounds. Metabolic parameters calculated for these organisms compared favourably with those reported in the literature by other researchers. Mixed populations of sediment micro-organisms were also isolated and studied in this work for their selenite and selenate reduction abilities. Total reduction of added selenite at levels up to 100 mg/L was recorded for a number of the organisms studied in this work. A maximum specific uptake rate for selenite of 3040 mgSe(IV).(gcells)-1.(h)-1 for one isolate (Shewanella putrefaciens) was determined, exceeding rates reported in the literature by other authors. Use of the indigenous micro-organisms from Lake Macquarie for the bioremediation of selenium containing waste streams was also examined in this work and selenium reduction in an immobilised cell reactor was demonstrated with such organisms. Concentrations, speciation, sediment core profiles and geochemical phase associations for selenium were determined for sediment samples collected at a variety of sites throughout Lake Macquarie and from Wyee Creek, a selenium-impacted fluvial input to the lake. The maximum concentration of selenium obtained in this work for the lake proper was 4.04 mg/kg, considerably lower than values reported over a decade ago (Batley, 1987) but consistent with reported reductions of selenium input into the lake from the lead-zinc smelter. Selective extraction methodology (Tessier et al. and BCR methods) studied geochemical phase association of selenium in Lake Macquarie sediments and found up to 44% of selenium was in bioavailable forms. Of interest and environmental concern was levels of selenium found in sediments of Wyee Creek, which previously received overflows from the ash dam associated with the Vales Point Power Station. Sediment selenium levels of up to 300 mg/kg were determined for this creek. These were an order of magnitude or more greater than those recorded for the lake itself and are of concern as to the potential impact on benthic organisms and those animals, including humans, who consume them. While this work can only provide a 'snapshot' of conditions within Lake Macquarie at the time of the sampling events recorded herein, it does make several important contributions to the understanding of selenium biogeochemistry in Lake Macquarie. These include: presentation of the hypothesis that selenium levels in surficial sediments being deposited in the north of the lake have decreased in recent years as a result of selenium reduction measures undertaken by the lead-zinc smelter; determination that up to 44% of selenium in surficial sediments from the lake is associated with sediment phases in which selenium has the potential to become remobilized and hence possibly bioavailable; and documentation of selenium concentrations in Wyee Creek, identifying the area as having selenium concentrations an order of magnitude or more greater than the lake itself. Concerning the role played by microorganisms in the biogeochemical cycling of selenium in Lake Macquarie, this work has: identified individual isolated and mixed cultures of bacteria that can reduce selenium as selenite to lower oxidation states; identified individual isolated and mixed cultures of bacteria that can reduce selenium as selenate to lower oxidation states; identified volatile methylated selenium compounds in the headspace gases of microorganisms reducing selenate; determined Minimum Inhibitory Concentrations for selenate and selenite for organisms isolated from Lake Macquarie; identified casein hydrolysate as a preferred carbon source for selenium reducing microorganisms from Lake Macquarie; and demonstrated that bioremediation of selenium contaminated waste streams using indigenous organisms from Lake Macquarie is feasible on the laboratory scale. Further research areas suggested by this work include: additional investigations of elevated selenium levels in Wyee Creek sediments; determination of the role of microbes in in-situ selenium reduction; and optimisation of selenium biotreatment/bioremediation of selenium-containing waste streams and sediments. In summary, this work, in rejecting the null hypothesis that the oxidation states of selenium in sediments from Lake Macquarie, NSW, are independent of microbial activity and accepting the alternate hypothesis that these oxidation states are not independent of microbial activity, contributes to the understanding of the role of microorganisms in the biogeochemical cycling of selenium, having applicability to both the specific ecosystem of Lake Macquarie, NSW, and also to selenium cycling in the environment in general. In addition, this work has identified selenium contamination in Wyee Creek, one of the fluvial inputs to Lake Macquarie, which was previously been undocumented in the literature and which may pose significant potential risk to humans and the ecosystem due to sediment selenium levels one or more orders of magnitude higher than those recorded in the lake itself. Finally, this work has also identified a number of microorganisms indigenous to Lake Macquarie with the ability to reduce selenium from toxic, mobile forms to less toxic, immobile or volatile forms, and these organisms have been shown to have the potential for use in treatment of selenium contaminated waste streams and also in the bioremediation of selenium-contaminated sediments.
292

The optimisation of a method for total selenium analysis and application to cereal grain foods

Elis, [forename not supplied], elis.cen@student.rmit.edu.au January 2008 (has links)
Cereal based foods, including breakfast cereals and Asian noodles are potentially good sources of selenium. Although these are major foods consumed globally, their contribution to dietary intakes of selenium is unclear. In addition, there has been very limited research into the effect of processing steps on the analysis and apparent retention of selenium. The low levels typically present in foods and the presence of multiple chemical forms of the element provide significant analytical challenges to research in this area. Therefore, the aims of this study were firstly to evaluate and validate procedures for extraction and measurement of selenium in wheat flour. Secondly, the procedure has been applied to analysis of selenium in cereal foods. The methods employed were firstly validated using wheat-based reference materials and then samples of various breakfast cereals as well as different styles of Asian noodles were analysed. Selenium was extracted using closed- v essels by microwave digestion with a mixture of nitric acid and hydrogen peroxide, followed by determination through Inductively Coupled Plasma - Mass Spectrometry (ICP-MS). The optimum conditions for selenium determination in cereal based foods involved the digestion of 0.1 g samples using 1 mL of nitric acid and 1 mL of hydrogen peroxide. The addition of 1% (v/v) methanol was found to enhance the sensitivity of the ICP-MS system. Two particular isotopes of selenium (77 and 82) could be effectively employed in the analysis and there was no significant decrease in total selenium in the digested extracts during storage for up to twelve days under refrigeration and room temperature conditions. Good precision levels were obtained and the total selenium levels in the breakfast cereal samples ranged from 0.059 to 0.378 µg/g. For white salted noodles the values varied between 0.057 and 0.712 µg/g, for yellow alkaline noodles, 0.109 to 0.265 µg/g and 0.077 to 0.284 µg/g for fried instant noodles. There was no appar ent change observed in total selenium during the processing of fried instant noodles, indicating the effectiveness of the extraction method developed here. It is concluded that microwave digestion is an effective approach to sample extraction, the procedures validated in this study are suitable for cereal grain foods and that there is considerable variation in the selenium contents of breakfast cereal and Asian noodle products.
293

Selenoprotein W : distribution and function in rat tissue and cultured cells

Sun, Yu, 1963- 27 May 1998 (has links)
The objective of this study was to further determine the distribution of selenoprotein W (SeW) in tissues from rats and sheep fed different selenium levels and to search for the possible functions of this protein. In the rat study a total of 28 rat tissues were examined and SeW was found in all of the tissues except for liver, thyroid, pancreas, pituitary and eyes regardless of the level of Se fed. SeW was not detected in heart, lungs, prostate, esophagus, small intestine, tongue, skin diaphragm and skeletal muscle from selenium deficient rats, but was present in these tissues when the two higher levels of selenium (0.1 and 4.0 mg/kg) were fed. SeW has the highest expression in muscle, brain, testis and spleen when selenium is adequate. Interestingly, selenium deficiency resulted in undetectable SeW levels in heart and muscle from deficient sheep and rats, but the content in brain was unaffected by selenium status. Second generation selenium depleted and repleted rats indicated that the expression of SeW in cortex and cerebellum was not significantly affected by selenium, but selenium increased its levels in thalamus. Cortex had the highest SeW expression among the three parts of the rat brain. SeW levels in muscle, spleen, skin and testis were undetectable in weanling rats, but became detectable after 6 weeks of selenium repletion. Studies with various brain cell cultures indicated that Se appears to be metabolized differently by different brain cell types. As demonstrated in neuroblastoma and glial cells, glutathione peroxidase (GPX) activity decreased at a faster rate than SeW with neuroblastoma cells whereas SeW decreased at a faster rate than GPX activity in glial cells when selenium was removed from the media. Since other work showed that glutathione was bound to SeW, it was speculated that it has antioxidant function similar to other selenoproteins. SeW overexpressed and underexpressed cell lines were established by DNA recombinant techniques. There was a greater survival rate of overexpressed cells when incubated with 2,2'-Azobis (2-amidinopropane) dihydrochloride (AAPH) than control cells, suggesting SeW possibly has an antioxidant function. / Graduation date: 1999
294

Genetic and genomic approaches to the study of progression in mammary carcinogenesis /

Zhang, Xun. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 89-103).
295

Aqueous speciation of selenium during its uptake by green algae Chlamydomonas reinhardtii

Zhang, Xu 15 April 2013 (has links)
Selenium (Se) is a micronutrient, yet elevated Se can be toxic to aquatic organisms. The range of Se concentrations within which Se uptake goes from insufficient to toxic is very narrow. It is thus important to understand the Se biogeochemical cycle in aquatic systems. In this thesis, the study focuses on changes in Se speciation during uptake by green algae. An optimized method was adopted to quantify and speciate Se in water using flow-injection atomic fluorescence spectroscopy coupled with high-pressure liquid chromatography. Details on the method are given here. For the uptake experiments, the uptakes of four Se species (selenite (Se-IV), selenate (Se-VI), selenocystine (Se-Cys) and selenomethionine (Se-Met)) by the green algae Chlamydomonas reinhardtii were compared. This thesis reports that the algae take up higher amounts of organic Se than inorganic Se. Selenomethionine (Se-Met) had the most rapid uptake, during which Se-Cys was produced. For all experiments, Se-IV was produced and found to sorb onto the algae cells, revealing that Se-IV is an important intermediate compound. Mass balance calculations revealed that more than 90% of Se was lost during uptake, probably to the atmosphere. This study also investigated the release of Se during algae decay to simulate the fate of Se during early-diagenesis. Selenium-rich algae cells were mixed with estuarine sediments at the sediment–water interface in a series of column incubations experiments. During the 7-week incubations, Se speciation was measured at the water–sediment interface and in pore water samples. We found that all the Se released to the pore water was in the form of Se-Cys. Although preliminary, these results highlight the key role of organic-Se species in the biogeochemical cycle of Se in the aquatic environment.
296

Electronic transport properties of stabilized amorphous selenium x-ray photoconductors

Fogal, Bud J 17 March 2005
Amorphous selenium (a-Se) and its alloys are important photoconductor materials used in direct conversion flat panel digital x-ray detectors. The performance of these detectors is determined, in part, by the electronic transport properties of the a-Se photoconductor layer namely, the charge carrier mobility m and the deep trapping lifetime t. The product of the mobility and the lifetime mt, referred to as the charge carrier range, determines the average distance that photo-generated charge will travel before being removed from the transport band by deep localized states in the mobility gap of the semiconductor. The loss of carriers to these deep states reduces the amount of charge collected per unit of x-ray exposure, and, hence, limits the x-ray sensitivity of the detector. Two experimental techniques that may be used to measure the transport properties of holes and electrons in high resistivity semiconductors are described in this thesis. The Time-of-Flight (TOF) transient photoconductivity technique is used to evaluate the charge carrier mobility by measuring the time required for the charge carriers to transit a fixed distance under the influence of an applied electric field. The Interrupted-Field Time-of-Flight (IFTOF) technique is used to determine the charge carrier deep trapping time; the drift of the injected carriers is temporarily interrupted at a position in the sample by removing the applied field. When the field is reapplied the number of charge carriers has decreased due to trapping events. The carrier lifetime is determined from the dependence of the fraction of recovered charge carriers before and after the interruption with the interruption time. <p> TOF and IFTOF measurements were carried out on a number of samples of vacuum deposited selenium alloy x-ray photoconductors. Device quality photoconductor films are fabricated by evaporating a-Se source material that has been alloyed with a small quantitiy of As (~0.3 at. %) and doped with a halogen (typically Cl) in the p.p.m. range. The dependence of the carrier range on the composition of the photoreceptor film was accurately measured using both TOF and IFTOF measurements. It was found that the transport properties of the film could be controlled by suitably adjusting the composition of the alloy. Combined IFTOF and TOF measurements were also performed on several samples to examine the effects of trapped electrons on the hole transport properties in a-Se films. It was found that drifting holes recombine with the trapped electrons, and that this process could be described by a Langevin recombination process. This finding is important for the correct modeling of amorphous selenium digital x-ray detector designs. Finally, the effects of x-ray exposure on a-Se films were examined. A temporary reduction in the effective hole lifetime was observed due to an increase in the number of hole capture centers following an x-ray exposure. The capture coefficient between free holes and the x-ray induced hole capture centers was measured using combined TOF and IFTOF measurements. It was shown that this capture process was governed by the Langevin recombination mechanism. From these observations it was concluded that trapped electrons from a previous x-ray exposure act as recombination centers for subsequently generated holes, thereby reducing the effective hole lifetime in the sample.
297

Biotransformation of selenium and arsenic in insects : environmental implications

Andrahennadi, Ruwandi 09 July 2009
Living organisms constantly respond to changing environmental conditions, and some changes can be far from optimal for many organisms. Insects represent the majority of species in many ecosystems and play an important role in bioaccumulation and biotransformation of environmental contaminants such as selenium and arsenic. Some insectivorous predators feeding on these insects are highly sensitive to such elements resulting in reduced growth, reproductive failures and low population numbers. The mechanisms of selenium and arsenic uptake through the food chain are poorly understood. The determination of chemical speciation is a prerequisite for a mechanistic understanding of a contaminants bioavailability and toxicity to an organism. Synchrotron-based X-ray absorption spectroscopy was used to identify the chemical form of selenium and arsenic in insects in both the field and laboratory conditions. Insects living in streams near Hinton, Alberta affected by coal mine activities were examined for selenium speciation. Results showed higher percentages of inorganic selenium in primary consumers, detritivores and filter feeders than in predatory insects. Selenides and diselenides constitute a major fraction of selenium in these insects. In another field setting, speciation of selenium was studied in insects attacking selenium hyperaccumulating plant <i>Astragalus bisulcatus</i>. The effect of selenate and arsenate alone and the combined effects of selenate and arsenate on insects and parasitoids were monitored using a laboratory-reared moth (<i>Mamestra configurata</i>). Hosts receiving selenium biotransformed selenate to organic selenides and diselenides, which were transferred to the parasitoids in the third trophic level. Arsenic fed larvae biotransformed dietary arsenate to yield predominantly trivalent arsenic coordinated with three aliphatic sulfurs. Larvae receiving arsenate used a novel six-coordinated arsenic form as an excretory molecule in fecal matter and cast skin. X-ray absorption spectroscopy imaging with micro X-ray fluorescence imaging on selenate and arsenate fed larvae revealed highly localized selenium and arsenic species, zinc and copper within the gut. The results provide insights into how the insects cope with their toxic cargo, including how selenium and arsenic are biotransformed into other chemical forms and how they can be eliminated from the insects. The implication of selenium and arsenic species in the diet of predators and detritivores is discussed.
298

Comparative reproductive energetics and selenium ecotoxicology in three boreal-breeding waterfowl species

DeVink, Jean-Michel Albert 14 September 2007
Environmental conditions on wintering or spring-staging areas may influence subsequent reproductive performance in migratory birds. These cross-seasonal effects may result from habitat loss and degradation (e.g., via contamination) which in turn reduce reproductive success, particularly in waterfowl that use stored nutrients for reproduction. North American lesser scaup (<i>Aythya affinis</i>) and white-winger scoter (<i>Melanitta fusca</i>) numbers have declined over the past 20 years, particularly in the boreal forest, and remain well below conservation goals, whereas ring-necked duck (<i>A. collaris</i>) numbers have increased. Environmental changes on scaup and scoter wintering and staging areas have raised concern about possible cross-seasonal effects on birds arriving on breeding grounds. The spring condition hypothesis (SCH) purports that many female scaup fail to acquire sufficient nutrients in late winter and spring, causing a decrease in breeding propensity and productivity. The contaminant hypothesis proposes that increased exposure to contaminants (particularly selenium [Se]) on wintering and staging areas has decreased scaup productivity. Accordingly, I compared body condition and studied Se concentrations in scaup, scoters and ringnecks to test the condition and contaminant hypotheses. <p>Scaup had similar body condition to ringnecks, and had similar body mass compared to scaup collected near Yellowknife, NT, in 1968-70. There was no relationship between scaup and ringneck nutrient levels and claw tip carbon, nitrogen or hydrogen isotope values, suggesting that arrival body condition likely was not related to location or diet several months prior. Instead, scaup and ringnecks nutrient levels may be more affected by feeding or habitat conditions on or near the breeding grounds. Scaup had slightly higher liver Se concentrations than ringnecks, but levels in both species were below recognized harmful threshold concentrations; I found no relationship between Se and breeding propensity, or between Se and somatic lipid or protein stores. Scoters had much higher Se concentrations, yet contrary to predictions, there were positive relationships between Se and both lipid stores and breeding status. Follicle [Se] in scaup was below threshold concentrations; despite high liver Se in scoters, egg and follicle levels also were well below threshold concentrations. Using both body composition analysis and stable-isotope analysis I determined that scoters derive egg protein from their breeding ground diet, which likely prevents Se deposition from somatic protein to eggs, and egg lipids are apparently derived from somatic tissues. In all three species, liver Se concentrations were significantly correlated with claw tip ä15N. As the claw tip likely represents assimilated diet from 2-5 months prior to sampling, this correlation suggests that Se in these boreal breeding species is carried over from wintering and staging areas. <p>Overall, results did not support either the spring condition or contaminant hypotheses. Scaup and scoters are late-nesting species, with highest pair densities occurring at the northern extent of their range. Maximum ring-neck pair densities occur at more southern latitudes. Ring-necks also nest earlier and appear to be more flexible in timing of nest initiation. Therefore, it is possible that due to climate change, early spring conditions alter the optimal timing of nest initiation to the detriment of late-nesting species such as scaup and scoters, and favour earlier nesters like ringnecks. Further research into this mismatch hypothesis is warranted.
299

Pilot-Scale Demonstration of hZVI Process for Treating Flue Gas Desulfurization Wastewater at Plant Wansley, Carrollton, GA

Peddi, Phani 1987- 14 March 2013 (has links)
The hybrid Zero Valent Iron (hZVI) process is a novel chemical treatment platform that has shown great potential in our previous bench-scale tests for removing selenium, mercury and other pollutants from Flue Gas Desulfurization (FGD) wastewater. This integrated treatment system employs new iron chemistry to create highly reactive mixture of Fe^0, iron oxides (FeOx) and various forms of Fe (II) for the chemical transformation and mineralization of various heavy metals in water. To further evaluate and develop the hZVI technology, a pilot-scale demonstration had been conducted to continuously treat 1-2 gpm of the FGD wastewater for five months at Plant Wansley, a coal-fired power plant of Georgia Power. This demonstrated that the scaled-up system was capable of reducing the total selenium (of which most was selenate) in the FGD wastewater from over 2500 ppb to below 10 ppb and total mercury from over 100 ppb to below 0.01 ppb. This hZVI system reduced other toxic metals like Arsenic (III and V), Chromium (VI), Cadmium (II), Lead (II) and Copper (II) from ppm level to ppb level in a very short reaction time. The chemical consumption was estimated to be approximately 0.2-0.4 kg of ZVI per 1 m^3 of FGD water treated, which suggested the process economics could be very competitive. The success of the pilot test shows that the system is scalable for commercial application. The operational experience and knowledge gained from this field test could provide guidance to further improvement of technology for full scale applications. The hZVI technology can be commercialized to provide a cost-effective and reliable solution to the FGD wastewater and other metal-contaminated waste streams in various industries. This technology has the potential to help industries meet the most stringent environmental regulations for heavy metals and nutrients in wastewater treatment.
300

Reducing Lead and Selenium from Drinking Water Using Limestone-based Material

Tumati, Sindhu 01 May 2012 (has links)
Contamination of drinking water with metals is a major problem facing many areas of United States and the World. There is a need for an inexpensive remediation technology for the removal of metals in drinking water that can be applied to small rural water systems. This research will focus on the development of a process for removal of select metals from drinking water by limestone-based material. Metals in drinking water considered for this research include lead and selenium. Limestone-based material has demonstrated the potential to reduce select metals (lead, cadmium and arsenic) in drinking water, with the additional benefit of low-cost disposal of a stable waste product in ordinary landfills. Earlier research by the principal investigators using limestone-based material for drinking water treatment has clearly shown that this material can achieve metals removal of greater than 90 percent. This project will investigate techniques to improve removal efficiency of limestone-based material through adsorption and precipitation. This research will assist in the development of a granular adsorbent product that will remove metals and that can be manufactured and sold for use at the drinking water source, at point-of-use, or at point-of entry.

Page generated in 0.0367 seconds