• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 385
  • 244
  • 51
  • 31
  • 22
  • 22
  • 22
  • 22
  • 22
  • 22
  • 20
  • 20
  • 9
  • 7
  • 7
  • Tagged with
  • 943
  • 198
  • 84
  • 68
  • 64
  • 62
  • 55
  • 55
  • 53
  • 50
  • 50
  • 49
  • 48
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Sorption Studies of Synthetically Modified Carbon Nanomaterials

2014 January 1900 (has links)
The level of risk originating from toxic (heavy) metals in the environment and ecological systems is continuously escalating due to our imprudent development of mineral resources such as coal and gold. For example, selenium as one of the major components in coal has contaminated surface and groundwater sources, and represents a threat to human and ecosystem health accumulation in organisms known as selenosis. Arsenic, like selenium, has also a negative effect to human beings, so called "arsenicosis" if it is accumulated in an organism through dietary pathways. Therefore, these elements have threatened waterways by contaminating surface and groundwater sources, and the WHO has established the drinking water quality guideline as 10 ppb for selenium and arsenic. The development of surface modified carbon nano-materials was motivated by considering how toxic metal species such as selenium and arsenic can be effectively removed from aquatic environments such as mineral tailings ponds found at mine sites. The materials design strategy employed herein hypothesizes of the incorporation of Lewis acid-base sites by the preparation of surface modified carbon nano-material with magnetite (magnetite composite). The resulting composite materials were anticipated to have variable π-π interactions and H-bonding between (non-)metals and ligands. These novel composite sorbents were evaluated for sorptive removal of selenium and arsenic species in aqueous solution at variable conditions. Selenium and arsenic have variable adsorption affinity onto the surface of magnetite (iron oxide) and its composites and goethite (iron oxyhydrate) in aqueous solution. The sorptive properties of these materials were correlated to the synthetic strategy as evidenced by the characterization of these minerals and their adsorbent properties. The adsorptive properties were evaluated by comparing the adsorption of inorganic selenium species with various adsorbents (magnetite, magnetite composites, activated carbon, and goethite) through adsorption kinetics and at equilibrium conditions. A novel “in situ” kinetic set-up for this experiment was developed using a non-magnetic stirrer device with a semi-permeable filtration barrier. The analytical measurement of selenium uptake was achieved using hydride generation atomic absorption spectroscopy. An arylarsenical (roxarsone) in aqueous solution was removed by using the same adsorbents used for selenium sorption and using a novel one-pot kinetic experiment with a non-magnetic stirrer and a dialysis-based tubing filter. Determination of roxarsone uptake was evaluated with UV-vis spectroscopy. This study showed the prepared magnetite composites might be excellent adsorbents for removing organic (aryl) and inorganic forms of Se and As chemical species in aqueous solution. The composite nature of the composite adsorbents suggests their potential as dual function sorbents due to their affinity toward organic (aryl) and inorganic anion species. In the occurrence of iron leaching, it was attenuated at low temperatures for the composite materials; whereas, greater leaching occurred above room temperature due to the increased thermal breakdown of magnetite particles in the pores or on the surface of activated carbon. In addition to the aforementioned tunable surface reactivity and surface area, magnetite composites have magnetic susceptibility properties that enable physical separation of adsorbents in water treatment processes by employing an electro-magnet to induce phase separation.
312

ELECTRON LIFETIME AND ITS DEPENDENCE ON TEMPERATURE AND DOSE IN a-Se PHOTOCONDUCTORS

2013 July 1900 (has links)
Electron transport in vacuum deposited a-Se films has been investigated by Interrupted-Field Time-of-Flight (IFTOF) transient photoconductivity experiments to examine the effect of sample temperature (T) and applied electric field (F) on X-ray induced changes in the electron lifetime. Upon exposure to x-rays, the electron lifetime decreases. The decrease in normalized lifetime is almost linearly proportional to the absorbed dose, and is more significant at higher temperatures. Upon the cessation of x-ray irradiation, the lifetime recovers towards its equilibrium value through a structural relaxation process, and is characterized by a structural relaxation time. The structural relaxation time decreases with temperature in an Arrhenius fashion, and exhibits an activation energy that is roughly 1.4 eV. The structural relaxation time at room temperature (21 C) is 2 – 4 hrs whereas at 35 C, 6 – 10 mins. These measurements are important in characterizing the charge collection efficiency of a-Se based x-ray detectors, and its dependence on x-ray exposure and temperature. The results indicate that the rate of change of electron lifetime per unit exposure is less than 2%/Gy.
313

Selenium and trace mineral interaction in the nutrition of the growing pig.

Morrison, Linda L. January 1981 (has links)
No description available.
314

Fabrication and measurements on metal-semiconductor diodes

Chan, Alan Chin Luen January 1987 (has links)
No description available.
315

Selenium speciation by high performance liquid chromatography -atomic absorption spectrometry

Lei, Tian January 1994 (has links)
Selenium has been shown to have multiple biochemical effects ranging from nutrient deficiency at low levels to toxicity at high levels. This duality of concern has led to a demand for increased numbers of highly accurate and precise determinations of selenium in biological materials. A convenient procedure was developed for determining selenoamino acids by HPLC-THG-AAS, based on the derivatization of these analytes with Sanger's reagent. Selenomethionine, selenocystine and selenocysteine (after blocking the free selenol group with phenylmercurio cation) were converted to their N-2,4-dinitrophenyl derivatives, and separated on a Nucleosil 5-NO$ sb2$ column with methanolic mobile phase containing acetic acid and triethylamine. Furthermore, an improved HPLC-AAS interface design was modified and optimized for the detection of selenium in HPLC column eluate. The new design was (i) compatible with aqueous mobile phases containing volatile buffers and (ii) provided equivalent molar response to analytes containing Se($-$II), Se(+IV) and Se(+VI). A method for simultaneously determination of selenate, selenite, selenocystine, selenomethionine and selenoethionine was developed by using the HPLC-AAS system with aqueous acetic acid containing ammonium acetate as eluate solution on the cyanopropyl column. The equivalent low ng limits of detection (1-2 ng as Se) for different oxidation states of selenium analytes were obtained using several different mobile phases and/or columns. A phenol extraction procedure for selenate, selenite, selenocystine, selenomethionine and selenoethionine was evaluated for the determination of these selenium analytes in natural waters and wheat samples. The current HPLC-AAS system provides an inexpensive alternative to conventional techniques for the determination of selenium analytes in environmental samples.
316

INTERACTIONS BETWEEN SELENIUM AND POLYCHLORINATED BIPHENYLS (PCBs)

Stemm, Divinia Nolasco 01 January 2005 (has links)
This study investigated the interaction between polychlorinated biphenyls (PCBs) and selenium to explain the mechanism involved that could affect selenium metabolism and its anti-cancer property. PCBs congeners and mixtures were previously found to reduce hepatic Se and Se-dependent glutathione peroxidase activity. I hypothesized that certain PCB congeners affect selenium metabolism in the rat liver resulting in diminished antioxidant capacity of selenoproteins, which could alter the ability of Se to protect against PCBs induced tumor promotion. In the first study, the influence of 3,3,4,4-tetrachlorobiphenyl (PCB 77) on hepatic Se and glutathione peroxidase (GPx1) activity as well as cytochrome P450 1A1 induction was examined by employing a time-course study, which showed that PCB 77 significantly reduced the hepatic selenium level and GPx1 activity and that this effect was influenced by gender. The next study explored how PCB 77 could deplete hepatic selenium by determining selenium concentrations in different tissues, feces and urine. This study demonstrated that PCB-77 decreased hepatic Se by increased excretion of Se in urine but not in feces. Unlike glutathione peroxidase, thioredoxin reductase activity was not affected by PCB 77. The third study investigated the effect of selenium supplementation on the tumor promoting activity of PCB 77 and 2,2,4,4,5,5-hexaclorobiphenyl (PCB 153) using a 2-stage carcinogenesis model. Se supplementation did not diminish the induction of altered hepatic foci by coplanar PCB 77 or ortho-substituted PCB 153. Instead of protection, the number of foci per cubic centimeter and per liver among the PCB-77 treated rats was increased as the selenium dietary level increased. PCB 153 did not show the same selenium dose-response effect; nevertheless, selenium supplementation did not confer protection against foci development. On the other hand, supranutritional selenium reduced the mean focal volume. Supranutritional selenium or PCBs did not affect cell proliferation or thioredoxin reductase activity. Lastly, the use of the Zeeman graphite furnace atomic absorption spectrometry (GFAAS) method and closed microwave digestion technique for selenium determination of biological samples was compared with the neutron activation analysis and fluorometry methods. I found that GFAAS was not as reliable as the other methods.
317

Selenate Reduction by Granular Iron and the Associated Isotope Fractionation

Shrimpton, Heather January 2013 (has links)
Research in selenium isotopes has been gaining interest as new contaminated sites are identified around the world. Selenium is an emerging contaminant, as it is increasingly being released through anthropogenic activities. It is an element with a very narrow range between nutrient requirement and toxic concentrations. Increased concentrations in the environment are a cause for concern. Selenium can be made less toxic in a system through reduction. Currently, investigations into fractionation caused by the reduction of Se by Fe and Fe minerals are limited. This thesis describes a batch study conducted using granular iron to treat Se(VI) in CaCO3 saturated water, under anaerobic conditions. The amount of Se(VI) in solution decreased to 14.5% of the initial concentration within three days. No quantifiable Se(IV) was found in solution. Analysis of the solid phase showed Se(IV), ferric selenite, FeSe, and Se(0) on the GI. The mass of Se0 on the GI increased over time. Iron selenide compounds became more prevalent after two days had elapsed. Effective fractionations of 4.3??? for 82/76Se and 3.0??? for 82/78Se were observed for this reaction. These effective fractionations are lower than fractionations observed in other experiments for reduction in solution. This discrepancy may be due to the reduction of Se(IV) occurring after adsorbing onto the solid phase, rather than reduction taking place only in solution.
318

Design and Characterization of an 8x8 Lateral Detector Array for Digital X-Ray Imaging

Hristovski, Christos 27 January 2011 (has links)
X-ray imaging has become one of the most pervasive and effective means of diagnosis in medical clinics today. As more imaging systems transition to digital modes of capture and storage, new applications of x-ray imaging, such as tomosynthesis, become feasible. These new imaging modalities have the potential to expose patients to large amounts of radiation so the necessity to use sensitive imagers that reduce dose and increase contrast is essential. An experimental design that utilizes laterally oriented detectors and amorphous semiconductors on crystalline silicon substrates has been undertaken in this study. Emphasis on fabricating a device suitable for medical x-ray imaging is the key principle throughout the design process. This study investigates the feasibility and efficiency of a new type of x-ray imager that combines the high speed, low noise, and potential complexity of CMOS circuit design with the high responsivity, large area uniformity, and flexibility of amorphous semiconductors. Results show that the design tradeoffs made in order to create a low cost, high fill factor, and high speed imager are realistic. The device exhibits good responsively to optical light, possesses a sufficient capacitive well, and maintains CMOS characteristics. This study demonstrates that with sufficient optimization it may be possible to design and deploy real time x-ray system on chip imagers similar to those used in optical imaging.
319

Integrating Methods for Characterizing the Passive Treatment of Mercury and Selenium in Groundwater and Sediment

Gibson, Blair Donald January 2011 (has links)
Standard geochemical analysis methods, such as aqueous geochemistry analysis and mineralogical analysis, frequently are utilized to evaluate the effectiveness of passive treatment systems, though they do not necessarily provide information regarding the mechanism of removal. Two emerging analytical techniques have shown promise by providing additional information to improve characterization of treatment systems: X-ray absorption spectroscopy (XAS) and stable isotope analysis. In this thesis, these novel analytical techniques were integrated with standard geochemical measurements to better characterize contaminated sites as well as potential treatment technologies used to mitigate aqueous contaminant mobility. Laboratory experiments were used to evaluate the removal of Se(VI) form simulated groundwater using granular Fe0 (GI) and organic carbon (OC). Greater than 90 % removal of Se(VI) was observed for systems containing GI after 5 days of reaction time and only 15 % removal was observed in systems containing OC. Synchrotron radiation-based XAS analysis of the treatment materials indicated the presence of both Se(IV) and Se(0) on the edges of GI grains after 6 hours reaction time, with no evidence of oxidized Se after 5 days of reaction. Several analytical techniques were integrated to characterize sediment contaminated with Hg and other contaminants through previous industrial practices. Analysis of the sediment by XAS indicated the possible presence of mercury selenide and copper sulfide. Resuspension tests were performed in oxic and anoxic conditions to simulate the effects of changing geochemical conditions of Hg release from sediments during dredging operations. The results indicated a higher release of Hg under oxic conditions in some sediment locations, suggesting that oxidative degradation of organic carbon or oxidative dissolution of Hg sulfides contributed to Hg release. The treatment of aqueous Hg(II) was evaluated with a variety of treatment media, including clay and GI. Treatment with GI was rapid, with 90 % removal observed after 2 hours reaction time. Extended X-ray absorption fine structure (EXAFS) analysis indicated the presence of Hg-O bonding on GI, suggesting that Hg was bound to Fe oxides formed on the surface of corroded GI. A new conceptual model for tracking the stable isotope fractionation of sulfur was coupled to the reactive transport model MIN3P to determine the effects of secondary transformations on sulfur cycling in passive treatment systems. Minor differences were noted when comparing the transport model-derived fractionation factor to calculations using a simplified Rayleigh distillation model, possibly indicating the effect of SO4 precipitation. The incorporation of stable isotope modeling provides a framework for the modeling of other isotope systems in treatment technologies.
320

Aqueous speciation of selenium during its uptake by green algae Chlamydomonas reinhardtii

Zhang, Xu 15 April 2013 (has links)
Selenium (Se) is a micronutrient, yet elevated Se can be toxic to aquatic organisms. The range of Se concentrations within which Se uptake goes from insufficient to toxic is very narrow. It is thus important to understand the Se biogeochemical cycle in aquatic systems. In this thesis, the study focuses on changes in Se speciation during uptake by green algae. An optimized method was adopted to quantify and speciate Se in water using flow-injection atomic fluorescence spectroscopy coupled with high-pressure liquid chromatography. Details on the method are given here. For the uptake experiments, the uptakes of four Se species (selenite (Se-IV), selenate (Se-VI), selenocystine (Se-Cys) and selenomethionine (Se-Met)) by the green algae Chlamydomonas reinhardtii were compared. This thesis reports that the algae take up higher amounts of organic Se than inorganic Se. Selenomethionine (Se-Met) had the most rapid uptake, during which Se-Cys was produced. For all experiments, Se-IV was produced and found to sorb onto the algae cells, revealing that Se-IV is an important intermediate compound. Mass balance calculations revealed that more than 90% of Se was lost during uptake, probably to the atmosphere. This study also investigated the release of Se during algae decay to simulate the fate of Se during early-diagenesis. Selenium-rich algae cells were mixed with estuarine sediments at the sediment–water interface in a series of column incubations experiments. During the 7-week incubations, Se speciation was measured at the water–sediment interface and in pore water samples. We found that all the Se released to the pore water was in the form of Se-Cys. Although preliminary, these results highlight the key role of organic-Se species in the biogeochemical cycle of Se in the aquatic environment.

Page generated in 0.0457 seconds