• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non-data aided digital feedforward timing estimators for linear and nonlinear modulations

Sarvepalli, Pradeep Kiran 30 September 2004 (has links)
We propose to develop new non-data aided (NDA) digital feedforward symbol timing estimators for linear and nonlinear modulations, with a view to reducing the sampling rate of the estimators. The proposed estimators rely on the fact that sufficient statistics exist for a signal sampled at the Nyquist rate. We propose an ad hoc extension to the timing estimator based on the log nonlinearity which performs better than existing estimators at this rate when the operating signal-to-noise ratio (SNR) and the excess bandwidth are low. We propose another alternative estimator for operating at the Nyquist rate that has reduced self-noise at high SNR for large rolloff factors. This can be viewed as an extension of the timing estimator based on the square law nonlinearity. For continuous phase modulations (CPM), we propose two novel estimators that can operate at the symbol rate for MSK type signals. Among the class of NDA feedforward timing estimators we are not aware of any other estimator that can function at symbol rate for this type of signals. We also propose several new estimators for the MSK modulation scheme which operate with reduced sampling rate and are robust to carrier frequency offset and phase offset.
2

Measurement and Prediction of Rotor Noise Sources for sUAS in Outdoor and Laboratory Environments

Whelchel, Jeremiah Mark 30 August 2023 (has links)
This work provides an experimental analysis of the acoustic footprint of a hexacopter in hover and low speed forward flight, comparison of aerodynamic performance and noise of eVTOL rotors operating in multiple facilities, and analysis of the noise associated with an outrunner brushless DC motor. Empirical and low-order models are used to predict aerodynamic performance, tonal noise, and broadband noise for isolated eVTOL rotors. In addition, a low noise, swept rotor design was evaluated. The acoustic footprint of a DJI Matrice 600 Pro hexacopter in hover and low speed forward flight was measured in the Virginia Tech Drone Park. The noise radiated by this vehicle was found to be dominated by tonal noise at low frequencies and dominated by broadband noise at high frequencies indicating that both are important when assessing the noise of these aircraft. Three distinct regions were observed in the frequency spectra of the noise. A-weighting measured acoustic spectra highlighted the importance of the mid-frequency broadband noise, in particular. The radiated noise in hover was also found to be similar to the noise of the vehicle during low-speed flyovers. Given this, significantly less complex measurements of an aircraft in hover or those associated with a rotor at static conditions may be used to assess the footprint of an eVTOL aircraft in low speed forward flight. The total vehicle noise was then decomposed by studying the performance and noise of isolated eVTOL rotors in multiple facilities and under different operating conditions. Facility effects on performance and noise were first assessed by experimentally studying two commercially available eVTOL rotors in an enclosed anechoic environment and an open environment. For experimental measurements that were conducted in the anechoic chamber, recirculation effects were shown to increase harmonic amplitudes more than 8 dB. Varying solidity screens were placed in the downstream wake of each rotor to delay the onset of recirculation. Placing the screens in the wake did not produce a noticeable effect on or delay recirculation within the confined testing environment. Measurements of the BPF and higher order harmonics of each rotor were found to be much more consistent in time when testing outdoors in an open-air environment. Amplitudes of these tones were also found to be like that of the spectral levels of the measurements conducted in the anechoic chamber once recirculation had been established. While the tonal levels were much more consistent throughout each measurement in the open-air environment, a significant amount of background noise was present and made characterizing the noise at low frequencies difficult. Environmental factors, mainly windspeed, were also found to impact the noise measurements which also added difficulty in characterizing the noise of the two tested rotors. In indoor facilities, the rotor inflow becomes contaminated due to recirculation shortly after the rotor reaches steady state and spectral levels of tones increased with increasing spectral averaging times. In outdoor environments, the inflow to the rotor disc becomes distorted due to changing wind conditions and turbulence in the atmosphere. Spectral levels of tones in the outdoor environment remained consistent in amplitude but exceeded those of the anechoic chamber significantly. Given this, environmental factors and recirculation were found to both increase the higher order harmonics. To mitigate these facility effects, measurements of force and noise were also conducted for the same two rotors in an anechoic open jet. Additionally, measurements were also conducted for a commercially available rotor along with a newly designed low noise swept rotor. Each of these rotors were tested in the anechoic open jet facility at static conditions and with the tunnel on. These measurements were accompanied with predictions of aerodynamic performance and tonal and broadband self-noise. BEMT was used to predict aerodynamic performance. Tonal noise associated with the rotor blade loading and thickness was predicted using F1A and rotor broadband self-noise was predicted using the model of BPM. The measured noise in this facility along with that from measurements in the anechoic chamber and outdoor environment were separated into tonal and broadband components by applying a phase averaging technique to the measured acoustic pressure time history. These results also show that in the indoor facility that the noise produced at the BPF is dominated by tonal sources, but the higher order harmonics can be attributed to broadband interactions particularly at static conditions. Broadband noise was drastically reduced by driving the tunnel at minimal inflow for the smallest rotor studied (R_tip= 120 mm). For the larger rotors (R_tip≥ 267 mm) broadband noise associated with BWI or TIN were not mitigated at low inflow speeds. Predictions of tonal noise at the BPF were within 3 dB for all observer locations when considering the smallest rotor studied. Predictions of the measured directivity at the BPF for the larger rotors were inaccurate although predictions of thrust agreed with the measured. The largest rotors tested were equal in diameter to that of the open jet inlet. Thus, the limits of the testing facility were exceeded and increased noise was produced as the rotor blades interacted with the shear layer of the open jet. Directivity patterns of each rotor were also found to vary with increasing rotational rate. Overall, these results show that for analyzing the noise at hover conditions, introducing a small amount of inflow may be a good option when trying to understand the tonal noise and allows one to characterize the tonal noise independent of the broadband. However, this was also shown to be heavily dependent on the rotor diameter with regards to the open jet inlet and experimentalist must take this into consideration. While these measurements provide an analysis of the noise in hover and low speed ascent, they do not assess the noise of the vehicle operating in forward flight. In forward flight the rotors are subjected to edgewise flows which have an effect on the radiated noise thus analyzing the noise of these rotors operating at an angle of attack to the incoming flow was assessed. These effects were investigated by experimentally measuring the performance and noise of the smallest rotor studied when operating at a yaw relative to the incoming flow. For increasing yaw at the examined wind tunnel velocities, the measured thrust was found to converge to the value for zero inflow. Contours of SPL as a function of yaw angle for no inflow and an inflow speed of 8 m/s showed spectral levels to be minimal for an in-plane observer from 5×BPF to 30×BPF. The broadband noise was found to increase significantly for increasing yaw angle and tunnel inflow speed. These results show once again that the broadband noise is especially important during forward flight and new methods that consider wake interaction are needed to predict the noise in this flight regime. The rotor geometric parameter of sweep was also assessed from measurements in the anechoic open jet by comparing the aerodynamic performance and noise of a commercially available 762 mm diameter CF30x10.5 T-motor eVTOL rotor to that of an in house designed low noise swept rotor. The addition of sweep was found to reduce noise associated with BWI or TIN as the separated broadband noise was found to be less than that of the commercially available rotor. Comparison of thrust at static conditions and with increasing advance ratios showed both rotors to have similar performance, thus the addition of sweep was effective at reducing noise without sacrificing performance. Lastly, the noise associated with the electric drive system of these aircraft which consists of an ESC and brushless DC motor was analyzed. Acoustic measurements were made with and without an acoustic enclosure installed on a brushless DC motor and was found to be effective at reducing noise associated with the electric motor. The effects of two ESC's as well as their switching rates were also studied. The noise was found to be similar for both ESCs at low frequencies. At high frequencies the measured noise spectrum was found to be different when controlling the motor with different ESC's and a higher switching rate was found to reduce the noise with increasing switching rate although not completely monotonically. / Doctor of Philosophy / A new class of multi-rotor VTOL electric aircraft is becoming a dominant advanced vehicle concept. Urban Air Mobility (UAM) vehicles are designed for short routes within urban environments carrying only a few passengers during each flight. Other smaller Unmanned Aerial Systems (UAS) are increasingly being used for delivery services or to perform tasks which are more easily accessed with this technology like inspection or photography. Thus, these vehicles are expected to operate in close proximity to the general populace exposing it to aircraft noise which is currently limited to communities surrounding airports. For successful integration into the airspace with minimal community annoyance, the mechanisms responsible for generation of the noise must be understood. Traditionally, for conventional rotorcraft (one main rotor), the tonal noise has been more of a concern than the broadband component. eVTOL vehicles are often equipped with multiple rotors that are lightly loaded and operate at lower tip speeds which can be time varying. Thus, there is an increased significance of broadband noise. Lastly, these aircraft are equipped with an electric drive system that gives rise to an additional noise source that is not present for conventional aircraft. Best practices for measuring eVTOL noise are not currently established. Measurement of eVTOL rotor noise is complicated by the increased significance of the broadband sources. These have been shown to be facility dependent. Given this, there is a need for high quality experimental data and an analysis of experimental data in multiple facilities for these rotors and drive systems. Capabilities of traditional models to predict conventional rotorcraft noise also need to be assessed for these rotors. These two issues have been assessed in this work by first assessing the character of an eVTOL aircraft in hover and low speed flyovers. Both tonal and broadband components of the radiated noise were found to be significant. A-weighting, which is a metric used to assess the response of the human ear to the radiated noise showed increased significance of the broadband noise. This was followed by a characterization of the noise of isolated eVTOL rotors in multiple environments. Facility effects were addressed, and a low order prediction model was developed using methods that are traditionally used to predict noise associated with conventional rotorcraft. Lastly, the noise associated with the electric drive system of these vehicles was assessed and recommendations on how to reduce this source of noise were made. These results can be used to guide experimentalists when performing measurements of eVTOL rotor noise at static conditions and provide an eVTOL rotor noise data set that can be used to validate existing and forthcoming aerodynamic and acoustic prediction methods.
3

Trailing-edge noise: development and application of a noise prediction tool for the assessment and design of wind turbine airfoils. / Ruído de bordo de fuga: desenvolvimento e aplicação de ferramenta para avaliação e projeto de aerofólios para turbinas eólicas.

Saab Junior, Joseph Youssif 18 November 2016 (has links)
This report concerns the research, design, implementation and application of an airfoil trailing-edge noise prediction tool in the development of new, quieter airfoil for large-size wind turbine application. The tool is aimed at enabling comparative acoustic performance assessment of airfoils during the early development cycle of new blades and rotors for wind turbine applications. The ultimate goal is to enable the development of quieter wind turbines by the Wind Energy Industry. The task was accomplished by developing software that is simultaneously suitable for comparative design, computationally efficient and user-friendly. The tool was integrated into a state-of-the-art wind turbine design and analysis code that may be downloaded from the web, in compiled or source code form, under general public licensing, at no charge. During the development, an extensive review of the existing airfoil trailing-edge noise prediction models was accomplished, and the semi-empirical BPM model was selected and modified to cope with generic airfoil geometry. The intrinsic accuracy of the original noise prediction model was evaluated as well as its sensitivity to the turbulence length scale parameter, with restrictions imposed accordingly. The criterion allowed comparison of performance of both CFD-RANS and a hybrid solver (XFLR5) on the calculation of the turbulent boundary layer data, with the eventual adjustment and selection of the latter. After all the elements for assembling the method had been selected and the code specified, a collaboration project was made effective between Poli-USP and TU-Berlin, which allowed the seamless coupling of the new airfoil TE noise module, \"PNoise\", to the popular wind turbine design/analysis integrated environment, \"QBlade\". After implementation, the code calculation routines were thoroughly verified and then used in the development of a family of \"silent profiles\" with good relative acoustic and aerodynamic performance. The sample airfoil development study closed the initial design cycle of the new tool and illustrated its ability to fulfill the originally intended purpose of enabling the design of new, quieter blades and rotors for the advancement of the Wind Energy Industry with limited environmental footprint. / Este trabalho descreve a pesquisa de elementos iniciais, o projeto, a implantação e a aplicação de uma ferramenta de predição de ruído de bordo de fuga, no desenvolvimento de aerofólios mais silenciosos para turbinas eólicas de grande porte. O objetivo imediato da ferramenta é permitir a comparação de desempenho acústico relativo entre aerofólios no início do ciclo de projeto de novas pás e rotores de turbinas eólicas. O objetivo mais amplo é possibilitar o projeto de turbinas eólicas mais silenciosas, mas de desempenho aerodinâmico preservado, pela indústria da Energia Eólica. A consecução desses objetivos demandou o desenvolvimento de uma ferramenta que reunisse, simultaneamente, resolução comparativa, eficiência computacional e interface amigável, devido à natureza iterativa do projeto preliminar de um novo rotor. A ferramenta foi integrada a um ambiente avançado de projeto e análise de turbinas eólicas, de código aberto, que pode ser livremente baixado na Web. Durante a pesquisa foi realizada uma ampla revisão dos modelos existentes para predição de ruído de bordo de fuga, com a seleção do modelo semi-empírico BPM, que foi modificado para lidar com geometrias genéricas. A precisão intrínseca do modelo original foi avaliada, assim como sua sensibilidade ao parâmetro de escala de turbulência transversal, com restrições sendo impostas a esse parâmetro em decorrência da análise. Esse critério permitiu a comparação de resultados de cálculo provenientes de método CFD-RANS e de método híbrido (XFLR5) de solução da camada limite turbulenta, com a escolha do último. Após a seleção de todos os elementos do método e especificação do código, uma parceria foi estabelecida entre a Poli-USP e a TU-Berlin, que permitiu a adição de um novo módulo de ruído de bordo de fuga, denominado \"PNoise\", ao ambiente de projeto e análise integrado de turbinas eólicas \"QBlade\". Após a adição, as rotinas de cálculo foram criteriosamente verificadas e, em seguida, aplicadas ao desenvolvimento de aerofólios mais silenciosos, com bons resultados acústicos e aerodinâmicos relativos a uma geometria de referência. Esse desenvolvimento ilustrou a capacidade da ferramenta de cumprir a missão para a qual foi inicialmente projetada, qual seja, permitir à Indústria desenvolver pás mais silenciosas que irão colaborar com o avanço da energia eólica através da limitação do seu impacto ambiental.
4

Trailing-edge noise: development and application of a noise prediction tool for the assessment and design of wind turbine airfoils. / Ruído de bordo de fuga: desenvolvimento e aplicação de ferramenta para avaliação e projeto de aerofólios para turbinas eólicas.

Joseph Youssif Saab Junior 18 November 2016 (has links)
This report concerns the research, design, implementation and application of an airfoil trailing-edge noise prediction tool in the development of new, quieter airfoil for large-size wind turbine application. The tool is aimed at enabling comparative acoustic performance assessment of airfoils during the early development cycle of new blades and rotors for wind turbine applications. The ultimate goal is to enable the development of quieter wind turbines by the Wind Energy Industry. The task was accomplished by developing software that is simultaneously suitable for comparative design, computationally efficient and user-friendly. The tool was integrated into a state-of-the-art wind turbine design and analysis code that may be downloaded from the web, in compiled or source code form, under general public licensing, at no charge. During the development, an extensive review of the existing airfoil trailing-edge noise prediction models was accomplished, and the semi-empirical BPM model was selected and modified to cope with generic airfoil geometry. The intrinsic accuracy of the original noise prediction model was evaluated as well as its sensitivity to the turbulence length scale parameter, with restrictions imposed accordingly. The criterion allowed comparison of performance of both CFD-RANS and a hybrid solver (XFLR5) on the calculation of the turbulent boundary layer data, with the eventual adjustment and selection of the latter. After all the elements for assembling the method had been selected and the code specified, a collaboration project was made effective between Poli-USP and TU-Berlin, which allowed the seamless coupling of the new airfoil TE noise module, \"PNoise\", to the popular wind turbine design/analysis integrated environment, \"QBlade\". After implementation, the code calculation routines were thoroughly verified and then used in the development of a family of \"silent profiles\" with good relative acoustic and aerodynamic performance. The sample airfoil development study closed the initial design cycle of the new tool and illustrated its ability to fulfill the originally intended purpose of enabling the design of new, quieter blades and rotors for the advancement of the Wind Energy Industry with limited environmental footprint. / Este trabalho descreve a pesquisa de elementos iniciais, o projeto, a implantação e a aplicação de uma ferramenta de predição de ruído de bordo de fuga, no desenvolvimento de aerofólios mais silenciosos para turbinas eólicas de grande porte. O objetivo imediato da ferramenta é permitir a comparação de desempenho acústico relativo entre aerofólios no início do ciclo de projeto de novas pás e rotores de turbinas eólicas. O objetivo mais amplo é possibilitar o projeto de turbinas eólicas mais silenciosas, mas de desempenho aerodinâmico preservado, pela indústria da Energia Eólica. A consecução desses objetivos demandou o desenvolvimento de uma ferramenta que reunisse, simultaneamente, resolução comparativa, eficiência computacional e interface amigável, devido à natureza iterativa do projeto preliminar de um novo rotor. A ferramenta foi integrada a um ambiente avançado de projeto e análise de turbinas eólicas, de código aberto, que pode ser livremente baixado na Web. Durante a pesquisa foi realizada uma ampla revisão dos modelos existentes para predição de ruído de bordo de fuga, com a seleção do modelo semi-empírico BPM, que foi modificado para lidar com geometrias genéricas. A precisão intrínseca do modelo original foi avaliada, assim como sua sensibilidade ao parâmetro de escala de turbulência transversal, com restrições sendo impostas a esse parâmetro em decorrência da análise. Esse critério permitiu a comparação de resultados de cálculo provenientes de método CFD-RANS e de método híbrido (XFLR5) de solução da camada limite turbulenta, com a escolha do último. Após a seleção de todos os elementos do método e especificação do código, uma parceria foi estabelecida entre a Poli-USP e a TU-Berlin, que permitiu a adição de um novo módulo de ruído de bordo de fuga, denominado \"PNoise\", ao ambiente de projeto e análise integrado de turbinas eólicas \"QBlade\". Após a adição, as rotinas de cálculo foram criteriosamente verificadas e, em seguida, aplicadas ao desenvolvimento de aerofólios mais silenciosos, com bons resultados acústicos e aerodinâmicos relativos a uma geometria de referência. Esse desenvolvimento ilustrou a capacidade da ferramenta de cumprir a missão para a qual foi inicialmente projetada, qual seja, permitir à Indústria desenvolver pás mais silenciosas que irão colaborar com o avanço da energia eólica através da limitação do seu impacto ambiental.
5

Design and performance evaluation of a full rate, full diversity space-time-spreading code for an arbitrary number of Tx antennas

Maasdorp, Francois De Villiers 18 September 2008 (has links)
Since the mid 1990’s, the wireless communications industry has witnessed explosive growth. The worldwide cellular and personal communication subscriber base surpassed 600 million users by late 2001, and the number of individual subscribers surpassed 2 billion at the end of 2006 [1, 2]. In order to attract and accommodate these subscribers, modern communication systems, like the Third Generation (3G) and Fourth Generation (4G) cellular networks, will have to provide attractive new features such as increased data throughput rates, greater system capacity, and better speech quality. These modern communication systems promise to have advantages such as wireless access in ways that have never been possible before, providing, amongst others services such as live television (TV) broadcasting to Mobile Stations (MS)s, multi-megabit Internet access, communication using Voice over Internet Protocol (VoIP), unparalleled network capacity, seamless accessibility and many more. With specific, but not exclusive reference to the cellular environment, there are numerous ways to increase the data throughput rate and system capacity. From an economical perspective, it would be more efficient to add equipment to the Base Station (BS) rather than the MSs. To achieve these improvements the motivation to utilise transmit diversity’s capabilities have been identified as a key research issue in this study. Alamouti [3] proposed a transmit diversity technique using two transmit antennas and one receive antenna, providing the same diversity order than using one transmit antenna and two receive antennas. Since Alamouti’s publication in 1998, many papers in the field of Space-Time (ST) coding have been published. Current research in the field of ST coding consists of finding methods to extend the number of transmit antennas to more than four, while still achieving full rate, as well as full diversity which is the main motivation for this study. This study proposes a novel idea of breaching the limitations with ST coding theory by combining ST coding with Spread Spectrum (SS) modulation techniques in order to extend the number of transmit antennas to more than four and still achieve full rate as well as full diversity. An advantage of the proposed scheme, called Direct Sequence Space-Time Spreading (DSSTS) has over current Space-Time Spreading (STS) techniques is that it uses 50% less spreading codes. A performance evaluation platform for the DSSTS scheme was developed to simulate the performance of the scheme in a realistic mobile communication environment. A mobile communication channel that has the ability to simulate time-varying multipath fading was developed and used to evaluate the performance of the DSSTS scheme. From the simulation results obtained, it is evident that Walsh sequences that exhibit particularly good cross-correlation characteristics, cannot overcome the effect of the antenna self-noise in order to exploit the diversity gain by adding extra antennas, i.e. diversity extension. The research also showed that an optimal trade-off exists between antenna diversity and antenna created self-noise. Performance results of the DSSTS scheme in slow and fast fading channels for a different number of transmit antennas are also presented in this study. With the capacity analysis of the DSSTS scheme, it was shown that the addition of extra transmit antennas to the system indeed increased the system capacity. A further addition to this study is the investigation into the assumption that the channel should be quasi-static over the frame length of the ST code. A Space Sequence Transmit Diversity (SSTD) technique is consequently proposed that allows the transmission of the Alamouti symbols during one time interval instead of two. This relieves the ST code from the assumption that the channel should be quasi-static, allowing it to be used in a more realistic multi-user environment. A performance evaluation platform for the SSTD scheme was developed and used to obtain simulation results in a multipath fading channel. It was also shown that the proposed SSTD scheme is successful in combating the effects of multipath fading for small Code Division Multiple Access (CDMA) user loads. However, as a rule of thumb, the square root of the spreading sequence length divided by two depicts the user load at which the SSTD scheme was not capable of overcoming the combined effects of Multi-User Interference (MUI) and multipath fading. / Dissertation (MEng)--University of Pretoria, 2008. / Electrical, Electronic and Computer Engineering / unrestricted
6

Analýza dynamických parametrů laserových vibrometrů / Analysis of dynamic parameters of laser vibrometers

Pavloň, Martin January 2017 (has links)
This diploma thesis deals with the theoretical description of interference methods used to measure vibrations, examines main parasitic effects and analyses its contribution to achievable the resolution. In the practical part, it uses several measurements to verify the effects of the level of reflected beam, stand-off distance and speckle noise. It also proposes a practical experiment for measuring dynamic parameters and signal-noise ratio. Results show that, the noise is exponentially dependent on the level of the reflected beam. The visible maximum of the vibrometer proved to be critical in terms of time stability of the measured signal level in two of the three measurements. Results of the dynamic measurement show that, the measured deviations were not degraded or significantly disturbed by the noise signal. From the measurement of the speckle noise, it emerged that the lowest level of noise is achieved with smooth and highly reflective materials.

Page generated in 0.0477 seconds