Spelling suggestions: "subject:"selfsplicing"" "subject:"selfpolicing""
1 |
Characterization of a Small Ribozyme with Self-Splicing ActivityHarris, Lorena Beatriz 03 December 2008 (has links)
No description available.
|
2 |
Group I Introns and Homing Endonucleases in T-even-like BacteriophagesSandegren, Linus January 2004 (has links)
<p>Homing endonucleases are rare-cutting enzymes that cleave DNA at a site near their own location, preferentially in alleles lacking the homing endonuclease gene (HEG). By cleaving HEG-less alleles the homing endonuclease can mediate the transfer of its own gene to the cleaved site via a process called homing, involving double strand break repair. Via homing, HEGs are efficiently transferred into new genomes when horizontal exchange of DNA occurs between organisms.</p><p>Group I introns are intervening sequences that can catalyse their own excision from the unprocessed transcript without the need of any proteins. They are widespread, occurring both in eukaryotes and prokaryotes and in their viruses. Many group I introns encode a HEG within them that confers mobility also to the intron and mediates the combined transfer of the intron/HEG to intronless alleles via homing.</p><p>Bacteriophage T4 contains three such group I introns and at least 12 freestanding HEGs in its genome. The majority of phages besides T4 do not contain any introns, and freestanding HEGs are also scarcely represented among other phages.</p><p>In the first paper we looked into why group I introns are so rare in phages related to T4 in spite of the fact that they can spread between phages via homing. We have identified the first phage besides T4 that contains all three T-even introns and also shown that homing of at least one of the introns has occurred recently between some of the phages in Nature. We also show that intron homing can be highly efficient between related phages if two phages infect the same bacterium but that there also exists counteracting mechanisms that can restrict the spread of introns between phages. </p><p>In the second paper we have looked at how the presence of introns can affect gene expression in the phage. We find that the efficiency of splicing can be affected by variation of translation of the upstream exon for all three introns in T4. Furthermore, we find that splicing is also compromised upon infection of stationary-phase bacteria. This is the first time that the efficiency of self-splicing of group I introns has been coupled to environmental conditions and the potential effect of this on phage viability is discussed.</p><p>In the third paper we have characterised two novel freestanding homing endonucleases that in some T-even-like phages replace two of the putative HEGs in T4. We also present a new theory on why it is a selective advantage for freestanding, phage homing endonucleases to cleave both HEG-containing and HEG-less genomes.</p>
|
3 |
Group I Introns and Homing Endonucleases in T-even-like BacteriophagesSandegren, Linus January 2004 (has links)
Homing endonucleases are rare-cutting enzymes that cleave DNA at a site near their own location, preferentially in alleles lacking the homing endonuclease gene (HEG). By cleaving HEG-less alleles the homing endonuclease can mediate the transfer of its own gene to the cleaved site via a process called homing, involving double strand break repair. Via homing, HEGs are efficiently transferred into new genomes when horizontal exchange of DNA occurs between organisms. Group I introns are intervening sequences that can catalyse their own excision from the unprocessed transcript without the need of any proteins. They are widespread, occurring both in eukaryotes and prokaryotes and in their viruses. Many group I introns encode a HEG within them that confers mobility also to the intron and mediates the combined transfer of the intron/HEG to intronless alleles via homing. Bacteriophage T4 contains three such group I introns and at least 12 freestanding HEGs in its genome. The majority of phages besides T4 do not contain any introns, and freestanding HEGs are also scarcely represented among other phages. In the first paper we looked into why group I introns are so rare in phages related to T4 in spite of the fact that they can spread between phages via homing. We have identified the first phage besides T4 that contains all three T-even introns and also shown that homing of at least one of the introns has occurred recently between some of the phages in Nature. We also show that intron homing can be highly efficient between related phages if two phages infect the same bacterium but that there also exists counteracting mechanisms that can restrict the spread of introns between phages. In the second paper we have looked at how the presence of introns can affect gene expression in the phage. We find that the efficiency of splicing can be affected by variation of translation of the upstream exon for all three introns in T4. Furthermore, we find that splicing is also compromised upon infection of stationary-phase bacteria. This is the first time that the efficiency of self-splicing of group I introns has been coupled to environmental conditions and the potential effect of this on phage viability is discussed. In the third paper we have characterised two novel freestanding homing endonucleases that in some T-even-like phages replace two of the putative HEGs in T4. We also present a new theory on why it is a selective advantage for freestanding, phage homing endonucleases to cleave both HEG-containing and HEG-less genomes.
|
4 |
Self-splicing of Group I Intron of the Mitochondrial Genome of the Sponge, Cinachyrella australiensisChan, Hui-mei 19 August 2009 (has links)
Intragenic regions (introns) are found in all classes of organism. Transcription of such genes must undergo a splicing reaction to produce the mature, functional form of RNAs. Introns can be divided into four categories by their splicing mechanisms, namely Group I, Group II, spliceosomal, and nuclear tRNA introns. The former two are self-splicing introns. Group I introns are ubiquitous, however, most metazoan mitochondrial genomes lack introns. A novel group I intron in the mitochondrial cytochrome oxidase I gene (cox1) of Cinachyrella auctraliensis, which belongs to the IB2 subgroup, encodes a putative homing endonuclease with two amino acid motifs of the LAGLIDADG family. The homing endonuclease may perform intron translocation. Splicing in the cox1 of the sponge was demonstrated by comparing the length of DNA and RNA sequences. The intron was spliced in vivo or in vitro as revealed by RT-PCR and sequencing. Group I introns are classified as ribozymes. The pre-mRNAs fold into specific configurations that facilitate attacks of free guanosine followed by two consecutive trans-esterification steps to remove the introns. The excised cox1 intron was found to form a circle with the 5¡¦-end linked to the 3¡¦-end. Two other forms of lariats were also found with the 5¡¦-end linked to the inside sequence of the intron. Mutagenesis of a key nucleotide, which participates base pairing of RNA secondary structure, in P7 region decreased the splicing activity of the intron.
|
5 |
Split Intein Applications for Downstream Purification and Protein ConjugationGaliardi, Jackelyn 05 October 2021 (has links)
No description available.
|
6 |
Heterologous expression of circular RNAs in Escherichia coli for analyzing the ligation process of chloroplastic viroids and producing double-stranded RNAs with insecticidal activityOrtolá Navarro, Beltrán 27 March 2023 (has links)
[ES] Los viroides, genomas mínimos de RNA circular no codificante, monocatenarios y muy estructurados, parasitan factores celulares de las plantas para replicarse autónomamente, establecer infecciones sistémicas y usualmente causar enfermedades. Los de la familia Avsunviroidae se replican y acumulan en cloroplastos por un mecanismo de círculo rodante simétrico. Una RNA polimerasa cloroplástica produce concatémeros lineales de polaridad complementaria que son reducidos a monómeros por las ribozimas de cabeza de martillo (HHR) del concatémero. Producen extremos 5'-hidroxilo y 2',3'-fosfodiéster cíclico, que la isoforma cloroplástica de la tRNA ligasa convierte en enlaces 5',3'-fosfodiéster intramoleculares, generando viroides circulares de polaridad complementaria que pueden entrar en otra ronda de transcripción, simétrica a ésta. En esta Tesis se han analizado las secuencias y estructuras viroidales esenciales para su circularización, usando como modelo el viroide latente de berenjena (ELVd), que induce infecciones asintomáticas en berenjena. Expresamos en Escherichia coli precursores del ELVd(+) lineales flanqueados por dos copias de su HHR. Su procesamiento genera monómeros con los extremos adecuados para la ligación por la tRNA ligasa de la berenjena, que es coexpresada. Mutaciones puntuales y deleciones en el sitio nativo de ligación sugieren que solo el dominio HHR es esencial para la circularización. La conservación de la secuencia y estructura de la HHR con las del sustrato natural del enzima (los tRNAs) nos hacen proponer que la HHR del ELVd secuestra la ligasa mimetizando las características generales del bucle anticodón de los tRNAs.
Este sistema de expresión permite también producir RNAs recombinantes, insertándolos en una posición particular del RNA del ELVd. Las quimeras son procesadas por las HHRs flanqueantes y sus extremos ligados por la tRNA ligasa. El andamiaje viroidal circular, compacto y posiblemente asociado a la ligasa, permite aumentar la vida media del RNA de interés y su acumulación en la bacteria. En esta Tesis adaptamos el sistema para producir RNAs de doble cadena (dsRNAs) que desencadenen interferencia por RNA (RNAi), un mecanismo de defensa y regulación génica eucariota basado en la complementariedad de bases entre RNAs. dsRNAs complementarios a genes endógenos reducen los niveles de sus transcritos y generan fenotipos de pérdida de función. Los insectos pueden tomar dsRNAs del ambiente, internalizarlos en sus células y distribuirlos sistémicamente, haciendo al RNAi una estrategia prometedora para el control de plagas. Para producir dsRNAs, separamos las repeticiones invertidas del gen diana que genera la horquilla con el cDNA de un intrón autocatalítico del grupo I de Tetrahymena thermophila, aumentando la estabilidad de los plásmidos de expresión. El intrón es eliminado tras la transcripción, resultando en una molécula viroidal de la que protruye el dsRNA de interés. Flanquear las repeticiones invertidas con una copia adicional permutada del intrón permite separar el ELVd del producto final, un dsRNA circular cerrado en ambos lados por pequeños bucles. Ambas moléculas poseen actividad reguladora: las quimeras viroide-dsRNA con homología al gen de la unión septada suave 1 del gusano de la raíz del maíz (Diabrotica virgifera virgifera) exhiben actividad insecticida oral contra las larvas similar a la de horquillas sintetizadas in vitro, y los dsRNAs circulares sin andamiaje viroidal homólogos al gen de la ATPasa vacuolar (subunidad A) y la proteína ribosomal S13 silencian eficientemente estos genes en adultos de la mosca del Mediterráneo (Ceratitis capitata); este caso es de especial relevancia al ser la primera demostración del RNAi para el control de esta plaga.
En conclusión, a pesar de su limitada relevancia agrícola, el ELVd es útil para investigar la biología molecular de la familia Avsunviroidae y una poderosa herramienta biotecnológica en combinación con el sistema de expresión en E. coli. / [CA] Els viroides, genomes mínims d'RNA circular no codificant, monocatenaris i molt estructurats, parasiten factors cel·lulars de les plantes per a replicar-se autònomament, establir infeccions sistèmiques i usualment causar malalties. Els de la família Avsunviroidae es repliquen i acumulen en cloroplasts per un mecanisme de cercle rodant simètric. Una RNA polimerasa cloroplàstica produeix concatèmers lineals de polaritat complementària que són reduïts a monòmers per els ribozims de cap de martell (HHR) del concatèmer. Produeixen extrems 5'-hidroxil i 2',3'-fosfodièster cíclic, que la isoforma cloroplàstica de la tRNA lligasa converteix en enllaços 5',3'-fosfodièster intramoleculars, generant viroides circulars de polaritat complementària que poden entrar en una nova ronda de transcripció, simètrica a la primera. En aquesta Tesi s'han analitzat les seqüències i estructures viroidals essencials per a la seua circularització, emprant com a model el viroide latent d'albergínia (ELVd), que indueix infeccions asimptomàtiques en albergínia. Expressem en Escherichia coli precursors de l'ELVd(+) lineals flanquejats per dos còpies del seu HHR. El seu processament produeix monòmers amb els extrems apropiats per a la lligació mediada per la tRNA ligasa de l'albergínia, que és coexpressada. Mutacions puntuals i delecions en el lloc nadiu de lligació suggereixen que només el domini HHR és essencial per a la circularització. La conservació de la seqüència i estructura del HHR amb les del substrat natural de l'enzim (els tRNAs) ens fan proposar que el HHR de l'ELVd segresta la lligasa mimetitzant les característiques generals del bucle anticodó dels tRNAs.
Aquest sistema d'expressió també permet produir RNAs recombinants, inserint-los en una posició particular de l'RNA de l'ELVd. Les quimeres són processades pels HHR flanquejants i els seus extrems lligats per la tRNA lligasa. L'RNA viroïdal circular, compacte i possiblement associat a la lligasa, permet augmentar la vida mitjana de l'RNA d'interés i la seua acumulació en els bacteris. En aquesta Tesi adaptem el sistema per a produir RNAs de doble cadena (dsRNAs) que desencadenen interferència per RNA (RNAi), un mecanisme de defensa i regulació gènica eucariota basat en la complementarietat de bases entre RNAs. dsRNAs complementaris a gens endògens redueixen els nivells dels seus transcrits i generen fenotips de pèrdua de funció. Els insectes poden prendre dsRNAs de l'ambient, internalitzar-los en les seues cèl·lules i distribuir-los sistèmicament, fent a l'RNAi una estratègia prometedora en el control de plagues. Per a produir dsRNAs, separem les repeticions invertides del gen diana que genera la forqueta amb el cDNA d'un intró autocatalític del grup I de Tetrahymena thermophila, augmentant l'estabilitat dels plasmidis d'expressió. L'intró és eliminat després de la transcripció, resultant en una molècula viroïdal de la qual protrueix el dsRNA d'interés. Flanquejar les repeticions invertides amb una còpia addicional permutada de l'intró permet separar l'ELVd del producte final, un dsRNA circular tancat als dos costats per xicotets bucles. Els dos tipus de molècules posseeixen activitat reguladora: les quimeres viroide-dsRNA amb homologia al gen de la unió septada suau 1 del cuc de l'arrel de la dacsa (Diabrotica virgifera virgifera) exhibeixen activitat insecticida oral contra les larves similar a la de forquetes sintetitzades in vitro, i els dsRNAs circulars sense l'RNA viroïdal homòlegs al gen de la ATPasa vacuolar (subunitat A) i la proteïna ribosomal S13 silencien eficientment aquests gens en adults de la mosca del Mediterrani (Ceratitis capitata); aquest cas és d'especial rellevància perquè és la primera demostració de l'RNAi per al control d'aquesta plaga.
En conclusió, malgrat la seua limitada rellevància agrícola l'ELVd és útil per a investigar la biologia molecular de la família Avsunviroidae i una poderosa ferramenta biotecnològica en combinació amb el sistema d'expressió en E. coli. / [EN] Viroids, minimal genomes of non-coding circular RNA, single-stranded and highly structured, parasitize plant cellular factors to replicate autonomously, establish systemic infections, and typically cause disease. Those of the family Avsunviroidae replicate and accumulate in chloroplasts by a symmetrical rolling circle mechanism. A chloroplast RNA polymerase produces linear concatemers of complementary polarity that are reduced to monomers by the hammerhead ribozymes (HHR) of the concatemer. They produce 5'-hydroxyl and 2',3'-cyclic phosphodiester ends, which the chloroplastic isoform of tRNA ligase converts to intramolecular 5',3'-phosphodiester bonds, generating circular viroids of complementary polarity that can enter another round of transcription, symmetric to the first one. In this Thesis, the viroid sequences and structures essential for its circularization have been analyzed, using as a model the eggplant latent viroid (ELVd), which induces asymptomatic infections in eggplant. We expressed in Escherichia coli linear ELVd(+) precursors flanked by two copies of its HHR. Its processing generates monomers with suitable ends for ligation by the eggplant tRNA ligase, which is co-expressed. Point mutations and deletions at the wild-type ligation site suggest that only the HHR domain is essential for circularization. The conservation of the sequence and structure of the HHR with those of the natural substrate of the enzyme (the tRNAs) lead us to propose that the HHR of the ELVd hijacks the ligase, mimicking the general characteristics of the anticodon loop of the tRNAs.
This expression system also allows the production of recombinant RNAs, inserting them into a particular position of the ELVd RNA. Chimeras are processed by flanking HHRs and their ends ligated by the tRNA ligase. The compact, circular viroidal scaffold, possibly associated with the ligase, allows increasing the half-life of the RNA of interest and its accumulation in the bacteria. In this Thesis we adapt the system to produce double-stranded RNAs (dsRNAs) that trigger RNA interference (RNAi), a eukaryotic gene regulation and defense mechanism based on base complementarity between RNAs. dsRNAs complementary to endogenous genes reduce the levels of their transcripts and generate loss-of-function phenotypes. Insects can take dsRNAs from the environment, internalize them into cells, and distribute them systemically, making RNAi a promising pest control strategy. To produce dsRNAs, we separated the inverted repeats of the target gene that generates the hairpin with the cDNA of a group-I autocatalytic intron from Tetrahymena thermophila, increasing the stability of the expression plasmids. The intron is removed after transcription, resulting in a viroidal molecule from which the dsRNA of interest protrudes. Flanking the inverted repeats with an additional copy of the intron in a permuted form allows the ELVd molecule to be separated from the final product, a circular dsRNA molecule capped on both sides by small loops. Both molecules have regulatory activity: the viroid-dsRNA chimeras with homology to the smooth septate junction 1 gene of the corn rootworm (Diabrotica virgifera virgifera) exhibit oral insecticidal activity against larvae similar to that of in vitro synthesized hairpins, and the circular dsRNAs without the viroid scaffold homologous to the vacuolar ATPase (subunit A) and ribosomal protein S13 genes efficiently silence those genes in adult Medfly (Ceratitis capitata); this case is of special relevance as it is the first demonstration of RNAi for the control of this pest.
In conclusion, despite its limited agricultural relevance, the ELVd is useful for investigating the molecular biology of the Avsunviroidae family and a powerful biotechnological tool in combination with the E. coli expression system. / This work was supported by the Ministerio de Ciencia e Innovación (Spain; co-financed
by the European Regional Development Fund) [BIO2017-83184-R] and [BIO2017‐
91865‐EXP]; Universitat Politècnica de València [PAID-01-17]. We acknowledge
support of the publication fee by the CSIC Open Access Publication Support Initiative
through its Unit of Information Resources for Research (URICI). / Ortolá Navarro, B. (2023). Heterologous expression of circular RNAs in Escherichia coli for analyzing the ligation process of chloroplastic viroids and producing double-stranded RNAs with insecticidal activity [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/192635
|
Page generated in 0.0663 seconds