• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functionalized nanocelluloses and their use in barrier and membrane thin films

Visanko, M. (Miikka) 13 October 2015 (has links)
Abstract Nanocellulose is envisioned as one of the key product innovations of future biorefineries, since it can potentially function in numerous high-end applications and replace many current petroleum-based products due to its superior properties, abundance and renewable nature. The main difficulty hindering the industrial upscaling of nanocellulose is the lack of feasible techniques for processing cellulose fibres on a nanoscale. At the same time, ongoing research efforts have concentrated on charting the suitability of nanocellulose for various novel applications. The chemical functionalization of cellulose is currently regarded as a significant step for both enhancing nanocellulose fabrication and increasing its value as a product by virtue of its adjustable surface properties. This thesis reports on the surface functionalization of cellulosic fibres by means of two new chemical pre-treatments based on periodate oxidation and sequential chlorite oxidation or reductive amination for use in the fabrication of nanocelluloses. The properties of the resulting nanocelluloses were characterized and their applicability to novel film structures was investigated. Both nanoporous thin films for composite membranes and self-standing barrier films were manufactured and studied for their suitability in water purification and packaging applications, respectively. The oxidation of cellulose to 2,3-dicarboxylic acid cellulose (DCC) significantly enhanced the nanofibril production as only 1-4 passes through the homogenizer were required for disintegration of the fibres down to nano-scale. The fabricated DCC-nanofibrils had both high optical transmittance and viscosity comparable to that of TEMPO-oxidized cellulose nanofibrils. DCC-nanofibrils with a carboxyl content of 1.75 mmol/g showed a potential for functioning as a nanoporous thin-film membrane layer in ultrafiltration tests. The second pre-treatment introduced an acid-free fabrication of amphiphilic cellulose nanocrystals (CNCs) with uniform width and length into nanocellulose production for the first time. Reaction conditions of periodate oxidation were presumed to be one of the key factors to impact the formation of either CNCs or cellulose nanofibrils. The butylamino-functionalized CNCs were used to fabricate barrier films that showed good mechanical strength and high resistance to permeation by oxygen even at elevated relative humidity. / Tiivistelmä Yksi metsäteollisuuden viimeisimmistä tuoteinnovaatiosta on nanoselluloosa, jolle on esitetty lukuisia uusia sovellusmahdollisuuksia sekä potentiaalia toimia korvaavana raaka-aineena öljypohjaisille tuotteille sen erinomaisten materiaaliominaisuuksien sekä globaalin saatavuuden ja uusiutuvuuden takia. Nanoselluloosan teollista hyödyntämistä on kuitenkin hidastanut kustannustehokkaiden valmistusmenetelmien puuttuminen. Samanaikaisesti on tehty laaja-alaista tutkimustyötä nanoselluloosan soveltuvuudesta uusiin käyttökohteisiin. Selluloosan kemiallista funktionalisointia pidetään tällä hetkellä yhtenä lupaavimpana menetelmänä tehostamaan sekä nanoselluloosan valmistusta että tuomaan lisäarvoa nanokuiduille, joiden pintaominaisuuksia voidaan muokata. Tässä työssä tutkittiin selluloosakuitujen funktionalisointia perjodaattihapetukseen sekä kloriittihapetukseen tai pelkistävään aminointiin perustuen ja nanoselluloosan valmistusta esikäsitellystä selluloosasta. Työssä tutkittiin erityisesti valmistettujen nanoselluloosien ominaisuuksia ja selvitettiin niiden soveltuvuutta uudentyyppisiin filmirakenteisiin. Filmirakenteita muokkaamalla tehtiin nanohuokoisia komposiittimembraaneita vedenpuhdistukseen sekä barrier-filmejä pakkausmateriaaleihin. Selluloosan hapetus 2,3-dikarboksyylihapposelluloosaksi tehosti nanoselluloosan valmistusta huomattavasti ja kuidut saatiin hajotettua 1-4 läpäisyllä homogenisaattorissa. Valmistetut DCC-nanofibrillit olivat optisesti läpinäkyviä sekä niiden viskositeetti oli yhtä korkea kuin aiemmin raportoiduilla TEMPO-hapetettuilla nanofibrilleillä. Ultrasuodatuskokeissa DCC-nanofibrilleistä pystyttiin muodostamaan nanohuokoinen kerros membraaninpinnalle, jota on mahdollista käyttää vedenpuhdistuksessa. Pelkistävällä aminointiesikäsittelyllä selluloosakuiduista onnistuttiin ensimmäistä kertaa valmistamaan kooltaan yhdenmukaisia amfifiilisiä selluloosananokiteitä ilman yleisesti käytettyä happohydrolyysiä. Siten työssä nanoselluloosien valmistukseen käytetyn perjodaattihapetuksen havaittiin soveltuvan sekä selluloosananokiteiden että selluloosananofibrillien valmistukseen. Butyyliamino-funktionalisoiduista selluloosananokiteistä valmistetut barrier-filmit olivat mekaanisesti vahvoja ja ne ehkäisivät hapenläpäisyä jopa korkeassa ilmankosteudessa.
2

Functionalized cellulose nanoparticles in the stabilization of oil-in-water emulsions:bio-based approach to chemical oil spill response

Ojala, J. (Jonna) 30 April 2019 (has links)
Abstract Nanocellulose is a renewable, biodegradable, and easily available material that is considered as an attractive resource for many different value-added applications in the emerging bio-based economy. Its outstanding properties, such as strength, lightness, transparency, and good thermal insulation, have inspired research and product development around nanocellulose. The potential of nanocellulose to replace synthetic chemicals made from non-renewable sources, for example, is considered to be very promising. Chemical functionalization, that is, the modification of the cellulosic surface properties, is seen to be beneficial in applications such as those in which higher hydrophobicity is needed. In this thesis, the ability of cellulose nanoparticles to stabilize oil droplets in oil-in-water emulsions was studied. The aim of the study was to explore the possibility of developing a new type of "green" oil spill chemical from cellulose. Therefore, the cellulose was chemically modified in an aquatic environment with a sequential periodate oxidation and chlorite oxidation followed by reductive amination reaction, which increased the hydrophobicity of the produced nanocellulose. In addition, the use of deep-eutectic solvents in the preparation of modified (succinylated and carboxylated) and non-modified cellulose nanoparticles was studied. Chemical (kraft) pulp, dissolving pulp, and semi-chemical fine fibers were used as raw materials in this research. The results demonstrated that chemically modified cellulose nanoparticles work well as stabilizers for oil-water emulsions resulting in small, stable oil droplets and impeding creaming, which is a typical phenomenon for particle stabilized emulsions. The modification of cellulose nanoparticles improved their ability to partition at the oil-water interface, which enabled efficient and irreversible adsorption. It was found that because of their small size, the cellulose nanocrystals can be compressed more tightly onto the surface of the oil droplet, while longer and more flexible cellulose nanofibrils formed a web structure between the oil droplets. All cellulose nanoparticle-stabilized emulsions were stable against droplet coalescence, and even at low temperatures, they retained their droplet size and stability. Salinity, on the other hand, improved stability when CNCs from chemical pulp were used, but it negatively affected stability when nanocrystals from semichemical pulp were used. / Tiivistelmä Uusiutuva, biohajoava ja helposti saatavilla oleva nanoselluloosa on merkittävä tulevaisuuden raaka-aine useissa erilaisissa käyttökohteissa. Sen ylivertaiset ominaisuudet, kuten lujuus, keveys, läpinäkyvyys ja lämmöneristävyys ovat olleet innoittamassa nanoselluloosan tutkimusta ja tuotekehitystä. Nanoselluloosan mahdollisuuksia ja käyttöä eri sovelluksissa korvaamaan esimerkiksi uusiutumattomista luonnonvaroista valmistettuja kemikaaleja, pidetään erittäin lupaavina. Kemiallisesta funktionalisoinnista eli selluloosan pintaominaisuuksien muokkauksesta nähdään olevan hyötyä, kun tavoitellaan nanoselluloosan toiminnallisuutta esimerkiksi hydrofobista luonnetta vaativissa sovelluksissa pinta-aktiivisen aineen tavoin. Tässä työssä tutkittiin erityisesti nanoselluloosapartikkeleiden kykyä stabiloida öljypisaroita dieselöljy-vesiemulsioissa. Tutkimuksen päämääränä oli selvittää mahdollisuutta kehittää uudentyyppistä, ”vihreää” öljyntorjuntakemikaalia selluloosasta. Tämän vuoksi selluloosaa muokattiin kemiallisesti vesiympäristössä yhdistetyllä hapetus- ja aminointikäsittelyllä, mikä lisäsi valmistetun nanoselluloosan hydrofobisuutta. Toisena käsittelyvaihtoehtona tutkittiin syväeutektisten liuottimien käyttöä sekä muokattujen (sukkinyloidut ja karboksyloidut) että muokkaamattomien nanoselluloosapartikkeleiden  valmistuksessa. Raaka-aineina työssä käytettiin kemiallista sellumassaa, liukosellua sekä puolikemiallista hienokuitua. Työn tuloksena voidaan todeta, että nanoselluloosasta valmistetut kemiallisesti muokatut (funktionalisoidut) nanopartikkelit toimivat hyvin öljy-vesiemulsiossa estäen emulsion öljypisaroiden yhteensulautumista. Nanopartikkelit stabiloivat emulsiossa olevan öljyn hyvin pieniksi pisaroiksi hidastaen kermottumista eli emulsion yleistä faasierottumista. Nanoselluloosan funktionalisointi paransi sen kykyä hakeutua öljy-vesi rajapintaan, mahdollistaen tehokkaan ja palautumattoman adsorption. Havaittiin, että pienen kokonsa vuoksi selluloosananokiteet pystyivät pakkautumaan tiiviimmin öljyn pinnalle, kun taas selluloosananokuidut, jotka ovat pidempiä, muodostivat verkkomaisen rakenteen myös öljypisaroiden väliin. Suolan lisäys vaikutti emulsion stabiilisuuteen vaihtelevasti eri näytteiden välillä, kun taas kylmät olosuhteet poikkeuksetta paransivat stabiilisuutta.

Page generated in 0.0781 seconds