Spelling suggestions: "subject:"selluloosan""
1 |
Reaction and mass transfer kinetics in multiphase bioreactors:experimental and modelling studiesTervasmäki, P. (Petri) 25 September 2018 (has links)
Abstract
In the sugar platform of biorefining, the complex polymeric structure of lignocellulose biomass is degraded into sugars, which are utilized by microbial cells in the further processing steps. The reaction steps in both biomass degradation and microbial fermentation processes involve multiphase reactions in which mass transfer and reaction kinetics often play a key role. The aim of this thesis is to characterize the effect of these conditions on enzymatic hydrolysis of cellulose and utilization of sugars by aerobic microbes. These types of liquid-solid (cellulose hydrolysis) and liquid-gas (microbial cultivation) systems are typically very demanding on the reactors that are used in the process.
By the fed-batch process utilized in this work, sufficient mixing in enzymatic hydrolysis of cellulose is achieved even with high final substrate concentration. One of the main outcomes of this work is the kinetic model that concentrates on the kinetics of fed-batch process by discretizing the substrate into subpopulations. By using this approach, the model parameters were identified in an adequate manner, and the poorly identified parameters could be sorted out. Parameter identifiability has been an issue in previous models for enzymatic hydrolysis of cellulose. Based on the experiments and modelling studies, it can be concluded that the enzymes remain intact for time scales relevant for the hydrolysis process. Thus, the decrease in the hydrolysis rate found in many literature studies is probably mostly due to substrate-enzyme interactions rather than denaturation of the enzyme.
In aerobic cell cultivations, the mixing and mass transfer conditions are often more critical for the process performance. In this work, we studied the performance and suitability of alternative reactor types to be used in aerobic cell cultivations and obtained some promising results. In addition, the thesis presents a modelling approach to study the effect of process conditions on metabolism and growth rate of Pichia pastoris yeast. The model combines a kinetic model for yeast growth and a model for the mixing and mass transfer conditions in stirred tank reactor. / Tiivistelmä
Biojalostuksen sokerialustassa lignoselluloosapohjaisen biomassan monimutkaista polymeerirakennetta muokataan ja sieltä vapautetaan monomeerisia sokereita, joita voidaan edelleen hyödyntää jatkojalostuksessa. Monet jatkojalostusprosessit käyttävät mikrobeja, joiden aineenvaihdunnassa sokereita voidaan jalostaa arvokkaammiksi tuotteiksi ns. fermentointiprosesseissa. Tämän väitöstyön tarkoitus on tutkia reaktio- ja aineensiirtokinetiikan vaikutusta selluloosan entsymaattiseen hydrolyysiin ja aerobisiin mikrobifermentointeihin. Näistä ensimmäinen on neste-kiintoainesysteemi ja jälkimmäinen neste-kaasusysteemi, ja tällaiset prosessit asettavat tyypillisesti merkittäviä vaatimuksia niissä käytettäville reaktoreille.
Tässä työssä hyödynnettiin kiinteän raaka-aineen vähittäistä syöttöä (ns. fed-batch prosessi) selluloosan hydrolyysissä, jolloin sekoitus voidaan pitää riittävänä suurillakin kiintoainemäärillä. Työn merkittävin tuotos on kineettinen malli, jossa hyödynnetään fed-batch prosessia ja koedataa osittamalla mallinnusyhtälöt raaka-aineen syöttöajan perusteella. Tällä tavalla mallin parametrit saatiin identifioitua kohtuullisella tarkkuudella sekä eriteltyä huonosti identifioituneet parametrit. Mallin parametrien identifiointi on ollut ongelmallista monissa vastaavan tyyppisissä malleissa aiemmin. Kokeiden ja mallinnustulosten perusteella voidaan sanoa, että hydrolyysissä käytettävät entsyymit pysyvät aktiivisina prosessin aikana, ja usein todettu hydrolyysin hidastuminen johtuu ennemmin kiinteän kuidun ja entsyymien vuorovaikutuksen muutoksista kuin entsyymin denaturoitumisesta.
Aerobisiin mikrobikasvatuksiin liittyen tässä työssä tutkittiin vaihtoehtoisten reaktorityyppien hyödyntämistä, joista saatiin myös lupaavia tuloksia. Lisäksi työssä kehitettiin mallinnustyökaluja, joilla voidaan tutkia prosessiolosuhteiden vaikutusta Pichia pastoris –hiivan metaboliaan ja kasvunopeuteen. Mallissa yhdistetään hiivan kasvun kineettinen malli sekä reaktoriolosuhteiden mallinnus.
|
2 |
Functionalized nanocelluloses and their use in barrier and membrane thin filmsVisanko, M. (Miikka) 13 October 2015 (has links)
Abstract
Nanocellulose is envisioned as one of the key product innovations of future biorefineries, since it can potentially function in numerous high-end applications and replace many current petroleum-based products due to its superior properties, abundance and renewable nature. The main difficulty hindering the industrial upscaling of nanocellulose is the lack of feasible techniques for processing cellulose fibres on a nanoscale. At the same time, ongoing research efforts have concentrated on charting the suitability of nanocellulose for various novel applications. The chemical functionalization of cellulose is currently regarded as a significant step for both enhancing nanocellulose fabrication and increasing its value as a product by virtue of its adjustable surface properties.
This thesis reports on the surface functionalization of cellulosic fibres by means of two new chemical pre-treatments based on periodate oxidation and sequential chlorite oxidation or reductive amination for use in the fabrication of nanocelluloses. The properties of the resulting nanocelluloses were characterized and their applicability to novel film structures was investigated. Both nanoporous thin films for composite membranes and self-standing barrier films were manufactured and studied for their suitability in water purification and packaging applications, respectively.
The oxidation of cellulose to 2,3-dicarboxylic acid cellulose (DCC) significantly enhanced the nanofibril production as only 1-4 passes through the homogenizer were required for disintegration of the fibres down to nano-scale. The fabricated DCC-nanofibrils had both high optical transmittance and viscosity comparable to that of TEMPO-oxidized cellulose nanofibrils. DCC-nanofibrils with a carboxyl content of 1.75 mmol/g showed a potential for functioning as a nanoporous thin-film membrane layer in ultrafiltration tests. The second pre-treatment introduced an acid-free fabrication of amphiphilic cellulose nanocrystals (CNCs) with uniform width and length into nanocellulose production for the first time. Reaction conditions of periodate oxidation were presumed to be one of the key factors to impact the formation of either CNCs or cellulose nanofibrils. The butylamino-functionalized CNCs were used to fabricate barrier films that showed good mechanical strength and high resistance to permeation by oxygen even at elevated relative humidity. / Tiivistelmä
Yksi metsäteollisuuden viimeisimmistä tuoteinnovaatiosta on nanoselluloosa, jolle on esitetty lukuisia uusia sovellusmahdollisuuksia sekä potentiaalia toimia korvaavana raaka-aineena öljypohjaisille tuotteille sen erinomaisten materiaaliominaisuuksien sekä globaalin saatavuuden ja uusiutuvuuden takia. Nanoselluloosan teollista hyödyntämistä on kuitenkin hidastanut kustannustehokkaiden valmistusmenetelmien puuttuminen. Samanaikaisesti on tehty laaja-alaista tutkimustyötä nanoselluloosan soveltuvuudesta uusiin käyttökohteisiin. Selluloosan kemiallista funktionalisointia pidetään tällä hetkellä yhtenä lupaavimpana menetelmänä tehostamaan sekä nanoselluloosan valmistusta että tuomaan lisäarvoa nanokuiduille, joiden pintaominaisuuksia voidaan muokata.
Tässä työssä tutkittiin selluloosakuitujen funktionalisointia perjodaattihapetukseen sekä kloriittihapetukseen tai pelkistävään aminointiin perustuen ja nanoselluloosan valmistusta esikäsitellystä selluloosasta. Työssä tutkittiin erityisesti valmistettujen nanoselluloosien ominaisuuksia ja selvitettiin niiden soveltuvuutta uudentyyppisiin filmirakenteisiin. Filmirakenteita muokkaamalla tehtiin nanohuokoisia komposiittimembraaneita vedenpuhdistukseen sekä barrier-filmejä pakkausmateriaaleihin.
Selluloosan hapetus 2,3-dikarboksyylihapposelluloosaksi tehosti nanoselluloosan valmistusta huomattavasti ja kuidut saatiin hajotettua 1-4 läpäisyllä homogenisaattorissa. Valmistetut DCC-nanofibrillit olivat optisesti läpinäkyviä sekä niiden viskositeetti oli yhtä korkea kuin aiemmin raportoiduilla TEMPO-hapetettuilla nanofibrilleillä. Ultrasuodatuskokeissa DCC-nanofibrilleistä pystyttiin muodostamaan nanohuokoinen kerros membraaninpinnalle, jota on mahdollista käyttää vedenpuhdistuksessa. Pelkistävällä aminointiesikäsittelyllä selluloosakuiduista onnistuttiin ensimmäistä kertaa valmistamaan kooltaan yhdenmukaisia amfifiilisiä selluloosananokiteitä ilman yleisesti käytettyä happohydrolyysiä. Siten työssä nanoselluloosien valmistukseen käytetyn perjodaattihapetuksen havaittiin soveltuvan sekä selluloosananokiteiden että selluloosananofibrillien valmistukseen. Butyyliamino-funktionalisoiduista selluloosananokiteistä valmistetut barrier-filmit olivat mekaanisesti vahvoja ja ne ehkäisivät hapenläpäisyä jopa korkeassa ilmankosteudessa.
|
3 |
Flotation using cellulose-based chemicalsHartmann, R. (Robert) 14 August 2018 (has links)
Abstract
Flotation is a well-known and widely used technique for the separation of particles smaller than 250 µm, but efficient performance requires the use of various synthetic chemicals which can potentially damage the health of humans and animals and pollute the environment. Consequently, their replacement through a more environment-friendly and sustainable alternative has been demanded. One promising candidate is cellulose, which is an abundant natural polymer that is environment-friendly and can be treated chemically and physically to yield tailored properties and thus a potential for use in processes such as flotation.
This work focuses on the use of cellulose-based reagents in flotation processes to replace the often harmful conventional reagents derived from mineral oil, plant oils or animal fats. The physico-chemical properties of cellulose differ from those of conventional reagents, leading to differences in performance during flotation. In particular, the chemical and morphological heterogeneity of cellulose affects its properties and thus its interaction with minerals and water. Consequently, its use requires the study of the fundamentals of flotation and their application including the physico-chemical heterogeneity of cellulose to determine the optimum conditions and enable efficient performance. This work focuses on the determination of the thermodynamic surface energetics of solid particles and changes in this after reagent adsorption, using the inverse gas chromatography technique in a dry atmosphere. Furthermore, interactions between cellulose and minerals immersed in water are investigated using the DLVO theory, the interaction forces between cellulose and the minerals being derived and correlated with flotability. The importance of free surface charges is then considered by investigating the electric surface potential of cellulose-coated minerals in connection with particle-bubble attachment efficiency. At the same time, conventional amphiphilic reagents are used and its performances are related to cellulose-based reagents. / Tiivistelmä
Vaahdotus on kaivannaisteollisuudessa laajasti käytössä oleva prosessi, jonka avulla saadaan erotettua tehokkaasti pieniä, alle 250 µm kokoisia partikkeleita. Vaahdotuksen apuaineena käytetään erilaisia synteettisiä kemikaaleja, jotka voivat aiheuttaa harmia ympäristölle. Siksi niiden korvaaminen ympäristöystävällisemmillä vaihtoehdoilla on tärkeää. Yksi lupaava vaihtoehto korvaavaksi materiaaliksi on selluloosa. Selluloosa on uusiutuva ja ympäristöystävällinen luonnonpolymeeri, josta voidaan valmistaa kemiallisesti ja fysikaalisesti käsittelemällä erilaisia biokemikaaleja. Näitä voidaan soveltaa erilaisissa prosesseissa, myös vaahdotuksessa.
Tässä työssä keskitytään selluloosapohjaisten kemikaalien käyttöön vaahdotuksessa tavanomaisten, usein haitallisten synteettisten kemikaalien korvaamiseksi. Selluloosan fysikaaliskemialliset ominaisuudet eroavat synteettisten vaahdotuskemikaalien ominaisuuksista, mikä vaikuttaa niiden vuorovaikutukseen mineraalien ja veden kanssa. Erityisesti selluloosan kemiallinen ja morfologinen heterogeenisuus on keskeinen tekijä. Selluloosan hyödyntäminen tulevaisuuden vaahdotuskemikaalina edellyttää selluloosan ja mineraalien vuorovaikutuksen syvällistä ymmärtämistä.
Tässä työssä tutkitaan selluloosan ja mineraalien vuorovaikutusta sekä IGC-menetelmän avulla, että DLVO-teorian että pintavarausmittausten avulla. Lisäksi tutkitaan selluloosan ja mineraalien vuorovaikutusvoimien yhteyttä vaahdotusprosessin onnistumiseen ja saavutettuja tuloksia verrataan kaupallisten reagenssien toimintaan.
|
4 |
Microfibrillation of pulp fibres:the effects of compression-shearing, oxidation and thermal dryingKekäläinen, K. (Kaarina) 29 November 2016 (has links)
Abstract
Cellulose micro- and nanofibrils are elongated, flexible nano-scale particles produced from natural fibres with intensive mechanical treatments, usually in the form of dilute aqueous suspensions. Due to the recalcitrant structure of the fibres, mechanical, chemical and enzymatic pre-treatments are often used to loosen the fibre wall structure so as to facilitate the mechanical liberation of micro- and nanofibrils and reduce the high amount of mechanical energy needed. However, it is still unclear how different chemistries affect the disintegration phenomena and how mechanical action starts to unravel the fibre structure, and thus how micro- and nanofibrillation could best benefit from the pre-treatments. In addition, the high water content used in the process increases the production and transportation costs of the material, so that the solids content should be increased. Reducing the water content before or after production would be challenging, however, due to changes in fibre properties during drying (hornification) and the tendency for the resulting nanofibrils to agglomerate. Also, the effect of high solids content and temperature on the reduction of fibres to nano- and microfibrils is still not well understood.
The aims of this work were to follow the changes in fibre morphology after mechanical, chemical and thermal modification and address their effects on the disintegration phenomena of the fibres to microfibrils. Mechanical compression-shearing, two selective oxidations and thermal drying in combination with TEMPO oxidation were used to modify the fibre structure before mechanical disintegration in a high-shear homogenizer or ball mill.
The results showed that sufficient swelling of the fibre cell walls was a prerequisite for successful microfibrillation. Swelling can be promoted by loosening the hydrogen bonding network with compression and shearing forces or by increasing the charge density. Different charge thresholds were observed for microfibrillation depending on the chemistry used. Extremely hornified fibres were also successfully microfibrillated with the aid of TEMPO oxidation. Different fibre disintegration mechanisms were seen depending on the modification type and disintegration conditions. In addition, micro- and nanofibrils and nanocrystals were successfully produced under high solids (≥ 50%) conditions. / Tiivistelmä
Luonnonkuiduista saatavat selluloosamikro- ja -nanofibrillit ovat pitkiä ja joustavia nanokokoluokan partikkeleita, joita valmistetaan yleensä intensiivisillä mekaanisilla käsittelyillä vesiliuoksissa. Kuitujen lujan rakenteen vuoksi valmistuksessa käytetään usein mekaanisia, kemiallisia ja entsymaattisia esikäsittelyjä heikentämään kuituseinämän tiivistä rakennetta, mikä helpottaa mikro- ja nanofibrillien irtoamista kuituseinämästä, sekä alentaa valmistuksen mekaanisen energian tarvetta. On kuitenkin edelleen epäselvää, miten erilaiset kemialliset käsittelyt vaikuttavat kuitujen hajoamiseen, miten kuiturakenne alkaa purkautua mekaanisessa käsittelyssä ja miten esikäsittelyillä voitaisiin parhaiten edistää mikro- ja nanofibrilloitumista. Valmistuksessa käytettävä korkea vesipitoisuus lisää mikro- ja nanofibrillien valmistus- ja kuljetuskustannuksia. Vesipitoisuuden alentaminen valmistuksessa tai sen jälkeen on kuitenkin haastavaa, sillä kuituominaisuudet muuttuvat kuivatuksessa ja valmiit nanofibrillit kimppuuntuvat helposti. Korkean kuiva-ainepitoisuuden ja lämpötilan vaikutusta kuidun hajoamiseen mikro- ja nanofibrilleiksi ei myöskään ymmärretä vielä täysin.
Työn tarkoituksena oli tutkia sellukuitujen rakenteen muutoksia mekaanisen, kemiallisen ja lämpömuokkauksen seurauksena, sekä tutkia niiden vaikutusta kuidun purkautumiseen mikrofibrilleiksi. Kuiturakennetta muokattiin puristus-hiertomenetelmällä, kahdella selektiivisellä hapetusmenetelmällä, sekä lämpökuivauksen ja nk. TEMPO-hapetuksen yhdistelmällä ennen kuitujen mekaanista hajottamista joko leikkaavassa homogenisaattorissa tai kuulamyllyssä.
Tulosten perusteella riittävä kuituseinämän turvottaminen oli edellytys onnistuneelle mikrofibrilloinnille. Turpoamista saatiin edistettyä hajottamalla kuiduissa olevia vetysidosverkostoja puristus- ja leikkausvoimilla tai kasvattamalla anionisen varauksen määrää kuiduissa. Varauksen kynnysarvo mikrofibrilloitumiselle riippui käytetystä hapetusmenetelmästä. Myös kuivatuksessa erittäin sarveistuneet kuidut saatiin mikrofibrilloitua TEMPO-hapetuksen avulla. Tulosten perusteella kuiduilla on erilaisia hajoamismekanismeja, jotka riippuvat käytetystä muokkauksesta, sen intensiivisyydestä, sekä hajottamisolosuhteista. Työssä onnistuttiin myös valmistamaan mikro- ja nanofibrillejä, sekä nanokiteitä tavanomaista huomattavasti korkeammassa (≥50 %) kuiva-ainepitoisuudessa.
|
5 |
Dilute acid catalysed hydrolysis of cellulose – extension to formic acidKupiainen, L. (Laura) 04 December 2012 (has links)
Abstract
New methods are being sought for the production of chemicals, fuels and energy from renewable biomass. Lignocellulosic biomass consists mainly of cellulose, hemicellulose and lignin. Cellulose and hemicellulose can be converted to their building blocks, i.e. sugars, via hydrolysis. This thesis is focused on glucose production from cellulose by dilute acid hydrolysis. Acid hydrolysis has the drawback of limited glucose yields, but it has the potential to become a short-term solution for biochemical production.
During acid hydrolysis, the cellulose chain is split into glucose, which undergoes further decomposition reactions to hydroxymethylfurfural, levulinic acid, formic acid and by-products like insoluble humins. The present thesis aims to increase our knowledge on complicated acid-catalysed hydrolysis of cellulose. Glucose decomposition and cellulose hydrolysis were studied independently in laboratory experiments. Kinetic modelling was used as a tool to evaluate the results. The effect of the hydrogen ion on the reactions was evaluated using formic or sulphuric acid as a catalyst.
This thesis provides new knowledge of cellulose hydrolysis and glucose decomposition in formic acid, a novel catalyst for high-temperature dilute acid hydrolysis. Glucose yields from cellulose hydrolysed in formic or in sulphuric acid were comparable, indicating that a weak organic acid could function as a cellulose hydrolysis catalyst.
Biomass fibres in the form of wheat straw pulp were hydrolysed more selectively to glucose than a model component, microcrystalline cellulose, using formic acid. Glucose decomposition took place similarly in formic and sulphuric acid when the temperature dependence of the hydrogen ion concentration was taken into account, but a significant difference was found between the reaction rates of cellulose hydrolysis in formic acid and in sulphuric acid. The observations can be explained by changes in the cellulose hydrolysis mechanism. Thus, it is proposed in this thesis that side-reactions from cellulose to non-glucose compounds have a more significant role in the system than has earlier been understood. / Tiivistelmä
Uusia menetelmiä etsitään kemikaalien, polttoaineiden ja energian valmistamiseen uusiutuvasta biomassasta. Eräs biomassa, ns. lignoselluloosa, koostuu pääasiassa selluloosasta, hemiselluloosasta ja ligniinistä. Selluloosa ja hemiselluloosa voidaan muuttaa hydrolyysin avulla niiden rakennuspalikoikseen eli sokereiksi. Tämä väitöskirja keskittyy glukoosin tuottamiseen selluloosasta laimean happohydrolyysin menetelmällä. Happohydrolyysi kärsii rajoittuneesta glukoosin saannosta, mutta sillä on potentiaalia tulla lyhyen aikavälin ratkaisuksi biokemikaalien tuotannossa.
Happohydrolyysin aikana selluloosaketju pilkkoutuu glukoosiksi, joka reagoi edelleen hajoamisreaktioiden kautta hydroksimetyylifurfuraaliksi, levuliini- ja muurahaishapoiksi ja kiinteäksi sivutuotteeksi. Tämän tutkimuksen tavoitteena on kasvattaa ymmärrystämme monimutkaisesta happokatalysoidusta selluloosan hydrolyysistä. Glukoosin hajoamista ja selluloosan hydrolyysiä tutkittiin erikseen laboratoriokokein. Kineettistä mallinnusta käytettiin työkaluna arvioimaan tuloksia. Vety-ionien vaikutus reaktioihin arvioitiin käyttämällä muurahais- ja rikkihappoja katalyytteinä.
Tämä väitöskirja antaa uutta tietoa selluloosan hydrolyysistä ja glukoosin hajoamisreaktioista muurahaishapossa, joka on uusi katalyytti korkean lämpötilan laimean hapon hydrolyysissä. Glukoosisaannot muurahaishappo-hydrolysoidusta selluloosasta olivat vertailukelpoisia vastaaviin rikkihappo-hydrolyysi saantoihin. Tämä viittaa siihen, että heikko orgaaninen happo voisi toimia selluloosahydrolyysin katalyyttinä.
Kun katalyyttinä käytettiin muurahaishappoa, vehnän oljesta tehdyt kuidut hydrolysoituivat selektiivisemmin glukoosiksi kuin mallikomponenttina toimineen mikrokiteisen selluloosan. Kun vetyionikonsentraation lämpötilariippuvuus otettiin huomioon, glukoosi hajosi samalla tavalla sekä muurahais- että rikkihappokatalyytissä, mutta merkittävä ero havaittiin selluloosahydrolyysin reaktionopeudessa. Havainnot voidaan selittää selluloosahydrolyysin mekanismissa tapahtuvilla muutoksilla. Väitöskirjassa esitetään, että sivureaktioilla selluloosasta ei-glukoosi-tuotteiksi on merkittävä vaikutus systeemiin.
|
6 |
Functionalized cellulose nanoparticles in the stabilization of oil-in-water emulsions:bio-based approach to chemical oil spill responseOjala, J. (Jonna) 30 April 2019 (has links)
Abstract
Nanocellulose is a renewable, biodegradable, and easily available material that is considered as an attractive resource for many different value-added applications in the emerging bio-based economy. Its outstanding properties, such as strength, lightness, transparency, and good thermal insulation, have inspired research and product development around nanocellulose. The potential of nanocellulose to replace synthetic chemicals made from non-renewable sources, for example, is considered to be very promising. Chemical functionalization, that is, the modification of the cellulosic surface properties, is seen to be beneficial in applications such as those in which higher hydrophobicity is needed.
In this thesis, the ability of cellulose nanoparticles to stabilize oil droplets in oil-in-water emulsions was studied. The aim of the study was to explore the possibility of developing a new type of "green" oil spill chemical from cellulose. Therefore, the cellulose was chemically modified in an aquatic environment with a sequential periodate oxidation and chlorite oxidation followed by reductive amination reaction, which increased the hydrophobicity of the produced nanocellulose. In addition, the use of deep-eutectic solvents in the preparation of modified (succinylated and carboxylated) and non-modified cellulose nanoparticles was studied. Chemical (kraft) pulp, dissolving pulp, and semi-chemical fine fibers were used as raw materials in this research.
The results demonstrated that chemically modified cellulose nanoparticles work well as stabilizers for oil-water emulsions resulting in small, stable oil droplets and impeding creaming, which is a typical phenomenon for particle stabilized emulsions. The modification of cellulose nanoparticles improved their ability to partition at the oil-water interface, which enabled efficient and irreversible adsorption. It was found that because of their small size, the cellulose nanocrystals can be compressed more tightly onto the surface of the oil droplet, while longer and more flexible cellulose nanofibrils formed a web structure between the oil droplets. All cellulose nanoparticle-stabilized emulsions were stable against droplet coalescence, and even at low temperatures, they retained their droplet size and stability. Salinity, on the other hand, improved stability when CNCs from chemical pulp were used, but it negatively affected stability when nanocrystals from semichemical pulp were used. / Tiivistelmä
Uusiutuva, biohajoava ja helposti saatavilla oleva nanoselluloosa on merkittävä tulevaisuuden raaka-aine useissa erilaisissa käyttökohteissa. Sen ylivertaiset ominaisuudet, kuten lujuus, keveys, läpinäkyvyys ja lämmöneristävyys ovat olleet innoittamassa nanoselluloosan tutkimusta ja tuotekehitystä. Nanoselluloosan mahdollisuuksia ja käyttöä eri sovelluksissa korvaamaan esimerkiksi uusiutumattomista luonnonvaroista valmistettuja kemikaaleja, pidetään erittäin lupaavina. Kemiallisesta funktionalisoinnista eli selluloosan pintaominaisuuksien muokkauksesta nähdään olevan hyötyä, kun tavoitellaan nanoselluloosan toiminnallisuutta esimerkiksi hydrofobista luonnetta vaativissa sovelluksissa pinta-aktiivisen aineen tavoin.
Tässä työssä tutkittiin erityisesti nanoselluloosapartikkeleiden kykyä stabiloida öljypisaroita dieselöljy-vesiemulsioissa. Tutkimuksen päämääränä oli selvittää mahdollisuutta kehittää uudentyyppistä, ”vihreää” öljyntorjuntakemikaalia selluloosasta. Tämän vuoksi selluloosaa muokattiin kemiallisesti vesiympäristössä yhdistetyllä hapetus- ja aminointikäsittelyllä, mikä lisäsi valmistetun nanoselluloosan hydrofobisuutta. Toisena käsittelyvaihtoehtona tutkittiin syväeutektisten liuottimien käyttöä sekä muokattujen (sukkinyloidut ja karboksyloidut) että muokkaamattomien nanoselluloosapartikkeleiden valmistuksessa. Raaka-aineina työssä käytettiin kemiallista sellumassaa, liukosellua sekä puolikemiallista hienokuitua.
Työn tuloksena voidaan todeta, että nanoselluloosasta valmistetut kemiallisesti muokatut (funktionalisoidut) nanopartikkelit toimivat hyvin öljy-vesiemulsiossa estäen emulsion öljypisaroiden yhteensulautumista. Nanopartikkelit stabiloivat emulsiossa olevan öljyn hyvin pieniksi pisaroiksi hidastaen kermottumista eli emulsion yleistä faasierottumista. Nanoselluloosan funktionalisointi paransi sen kykyä hakeutua öljy-vesi rajapintaan, mahdollistaen tehokkaan ja palautumattoman adsorption. Havaittiin, että pienen kokonsa vuoksi selluloosananokiteet pystyivät pakkautumaan tiiviimmin öljyn pinnalle, kun taas selluloosananokuidut, jotka ovat pidempiä, muodostivat verkkomaisen rakenteen myös öljypisaroiden väliin. Suolan lisäys vaikutti emulsion stabiilisuuteen vaihtelevasti eri näytteiden välillä, kun taas kylmät olosuhteet poikkeuksetta paransivat stabiilisuutta.
|
7 |
Bio-oil based polymeric composites for additive manufacturing / Biooljebaserade polymerkompositer för additiv tillverkningMuukka, Suvi January 2020 (has links)
Plast- och kompositindustrin har växt i årtionden och den ständigt växande världen och ny teknik kräver ännu större mängder polymerkompositer för en mängd olika tillämpningar. Numera är de negativa miljöaspekterna av polymerproduktion och plastavfall kända, men trots detta är råoljafortfarande det primära råmaterialet för de flesta polymerer. Att hitta biobaserade material medtillräckliga egenskaper för att ersätta de fullt syntetiska materialen är avgörande för en hållbarutveckling. Detta examensarbete studerar både glasfiber och mikrokristallin cellulosaarmerade biooljebaserade polyamider, samt undersöker hur de kan kompatibiliseras, deras mekaniska egenskaper samt användbarheten för additiv tillverkning. Kompatibilisering är en viktig aspekt när två föreningar blandas för att göra en komposit. Enlämplig kompatibilisator kommer att förbättra vidhäftningen vid gränsytan mellan armeringsmaterialet och polymermatrisen och därmed öka de mekaniska egenskaperna hos materialet. Glasfiber / polyamid-kompositen kompatibiliserades med vinyltrimetoxisilan, medanmikrokristallin cellulosa / polyamid-kompositen kompatibiliserades med 4,4'-difenylmetandiiisocyanat. Båda kompositerna analyserades för att erhålla information om termiska, mekaniska och reologiska egenskaper. Yt- och sprickmorfologin undersöktes också. Resultaten indikerar att armeringen resulterade i förbättrade mekaniska egenskaper, även om den önskade kompatibiliseringen inte erhölls i experimentet. Det mest uppmuntrande resultatet var att den biobaserade cellulosaarmeringen förbättrade de mekaniska egenskaperna. Genom visuell undersökning fanns den helt biobaserade polymerkompositen vara mjukare än den glasfiberarmerade. Framtidsutsikterna visar att det finns vissa problem att ta itu med och övervinna för att dessa material ska göras lämpliga för additiv tillverkning. Nyckeln är att hitta en kompatibilisator som tålupprepad bearbetning vid höga temperaturer. För att upprätthålla enhetliga egenskaper krävskorrekt spridning av armeringsmaterialet, vilket uppnås genom att optimera tillverkningsmetoden. Dessutom är cellulosa benägen att termisk nedbrytning, så behandlingstemperaturerna för både armeringsmaterialet och polymermatrisen bör övervägas noggrant. / Plastics and composites have been a growing industry for decades, and the always growing worldand new technologies demand even greater amounts of polymeric composites for a variety ofapplications. Nowadays the negative environmental aspects of polymer production and plastic waste are known, but despite that crude oil is still the primary material for most polymers. Finding biobased materials with sufficient properties to replace the fully synthetic ones is crucial in sustainable development. This master’s thesis studies both glass fiber and microcrystalline cellulose reinforcedbio-oil based polyamide, how they could be compatibilized, the mechanical properties and applicability for additive manufacturing. Compatibilization is an important aspect when two compounds are mixed to make a composite. A proper compatibilizer will enhance the interfacial adhesion between the reinforcement and matrix, thus increasing the mechanical properties of the material. The glass fiber/polyamide11 composite was compatibilized with vinyltrimethoxysilane, and the microcrystalline cellulose/polyamide11 composite was compatibilized with 4,4'-diphenylmethane diisocyanate. Both composites were analyzed to obtain information about thermal, mechanical, and rheological properties. The surface and fracture morphology are examined, as well.The results indicate that reinforcing resulted to enhanced mechanical properties, even though the desired compatibilization was not acquired in the experiment. The most encouraging result was that the bio-based cellulose reinforcement enhanced mechanical properties, by visual examination thefully bio-based polymeric composite was found to be more ductile than the glass fiber reinforcedone. For future prospect, there are few issues to be addressed and overcome for these materials to bemade suitable for additive manufacturing. The key is finding a compatibilizer that can withstand high processing temperatures repeatedly. Maintaining uniform properties requires proper dispersion of reinforcement, which is achieved by optimizing the manufacturing method. In addition, cellulose is prone to thermal degradation, so the processing temperatures for both reinforcement and matrix should be considered carefully. / Muovit ja komposiitit ovat jo vuosikymmenien ajan ollut kasvava teollisuuden ala, ja alatikehittyvä maailma sekä uudenlainen teknologia vaatii entistä enemmän polymeerikomposiittejaerilaisiin käyttökohteisiin. Nykyään polymeerituotannon ja käytöstä poistuvien muovituotteidennegatiivisista ympäristövaikutuksista ollaan tietoisia. Tästä huolimatta raakaöljy on pääraaka-ainepolymeerien valmistuksessa. Ympäristövaikutusten minimoimiseksi olisi tärkeää löytääbiopohjaisia materiaaleja, jotka ominaisuuksiensa puolesta ovat riittäviä korvaamaan täysinsynteettisiä materiaaleja. Tässä työssä on tutkittu sekä lasikuidulla että mikrokiteisellä selluloosallavahvistetun bioöljypohjaisen polyamidin kompatibilisointia ja mekaanisia ominaisuuksia, sekäkyseisten komposiittien soveltuvuutta materiaalia lisääviin valmistusmenetelmiin.Kompatibilisaatio on tärkeää, kun yhdistetään kaksi eri komponenttia yhdeksikomposiittimateriaaliksi. Sen tarkoituksena on vahvistaa molekyylien rajapinnan adheesiotalujitteen ja sidemassan välillä, jolloin materiaalin mekaaniset ominaisuudet paranevat. Lasikuidullalujitettujen polyamidikomposiittien kompatibilisointiin käytettiin vinyylitrimetoksisilaanilla jamikrokiteisellä selluloosalla lujitettu polyamidikomposiitti kompatibilisoitiin 4,4'-difenyylimetaanidi-isosyanaatilla. Molempien komposiittien termiset, mekaaniset ja reologiset ominaisuudetarvioitiin. Lisäksi tutkittiin pinnan ja murtumakohdan morfologiaa.Tulokset osoittavat, että polymeerin lujittaminen parantaa mekaanisia ominaisuuksia, vaikkatavoiteltua kompatibilisaatioita materiaalien välillä ei tapahtunutkaan. Työn lupaavin tulos olibiopohjaisen mikrokiteisen selluloosan tuoma parannus materiaalin kestävyysominaisuuksille.Etenkin silmämääräisesti tarkastellessa täysin biopohjainen polymeerikomposiitti oli taipuisampaakuin lasikuidulla lujitettu komposiitti.Muutamaan asiaan tulee kiinnittää erityisesti huomiota, jos tämänkaltaisia materiaaleja halutaankäyttää materiaalia lisäävissä menetelmissä. Tärkeintä on löytää kompatibilisoija, joka kestääkorkeita lämpötiloja toistuvasti. Lujitteen tasainen dispersio on tärkeää, jotta saadaan aikaantasaista laatua ja ominaisuudet ovat samanlaiset koko materiaalissa. Tämä saavutetaanvalmistusmenetelmän optimoinnilla. Lisäksi tulee ottaa huomioon selluloosan taipumus termiseenhajoamiseen, jolloin sekä lujitteen että sidemassan prosessointilämpötilat tulisi ollasamansuuruiset.
|
Page generated in 0.0523 seconds