Spelling suggestions: "subject:"semisupervised"" "subject:"semissupervised""
211 |
Federated Online Learning with Streaming Data for Intrusion Detection Systems : Comparing Federated and Centralized Learning Methods in Online and Offline SettingsArvidsson, Victor January 2024 (has links)
Background. With increased pressure from both regulatory bodies and end-users, interest in privacy preserving machine learning methods have increased among companies and researchers in the last few years. One of the main areas of research regarding this is federated learning. Further, with the current situation in the world, interest in cybersecurity is also at an all time high, where intrusion detection systems are one component of interest. With anomaly-based intrusion detection systems using machine learning methods, it is desirable that these can adapt automatically over time as the network patterns change, resulting in online learning being highly relevant for this application. Previous research has studied offline federated intrusion detection systems. However, there have been very little work performed in the study of online federated learning for intrusion detection systems. Objectives. The objective of this thesis is to evaluate the performance of online federated machine learning methods for intrusion detection systems. Furthermore, the thesis will study the performance relationship between offline and online models for both centralized and federated learning, in order to draw conclusions about the ability to extrapolate from results between the different types of models. Methods. This thesis uses a quasi-experiment to evaluate two different types of models, Naive Bayes and Semi-supervised Federated Learning on Evolving Data Streams (SFLEDS), on three different datasets, NSL-KDD, UNSW-NB15, and CIC-IDS2017. For each model, four variants are implemented: centralized offline, centralized online, federated offline and federated online, and in the federated setting the models are evaluated with 20, 30, and 40 clients. Results. The results show that the best performing model in general is the federated online SFLEDS. They also highlight an important problem with using imbalanced datasets without proper care for data preprocessing and model design. Finally, the results show that there are no general relationships between offline and online models that hold in both the centralized and federated settings in terms of prediction performance. Conclusions. The main conclusion of the thesis is that online federated learning has a lot of potential for the application of intrusion detection systems, but more research is required to find the optimal models and parameters that result in satisfactory performance. / Bakgrund. Med ökat tryck från både tillsynsorgan och slutanvändare har intresset för integritetsbevarande maskininlärning ökat hos företag och forskare under de senaste åren. Ett av huvudområdena där det forskas om detta är inom federerad inlärning. Vidare, med det nuvarande läget i världen är intresset för cybersäkerhet högre än någonsin, där bland annat intrångsdetekteringssystem är av intresse. Med avvikelsebaserade intrångsdetekteringssystem som använder sig av maskininlärning så är det önskvärt att dessa automatiskt kan anpassa sig över tid när nätverksmönster förändras, vilket resulterar i att online maskininlärning är högst relevant för området. Tidigare forskning har studerat federerade offline intrångsdetekteringssystem, men det finns väldigt lite forskning gällande federerad online maskininlärning för intrångsdetekteringssystem. Syfte. Syftet med det här arbetet är att utvärdera prestandan av federerad online maskininlärning för intrångsdetekteringssystem. Vidare kommer det här arbetet att studera prestandaförhållandet mellan offline och online modeller för både centraliserad och federerad inlärning, för att kunna dra slutsatser om förmågan att extrapolera resultat mellan olika typer av modeller. \newline\textbf{Metod.} Det här arbetet använder sig av ett kvasiexperiment för att utvärdera två olika modeller, Naive Bayes och Semi-supervised Federated Learning on Evolving Data Streams (SFLEDS), på tre olika dataset, NSL-KDD, UNSW-NB15 och CIC-IDS2017. För varje modell implementeras fyra varianter: centraliserad offline, centraliserad online, federerad offline och federerad online. De federerade modellerna utvärderas med 20, 30 och 40 klienter. Resultat. Resultaten visar att den generellt bästa modellen är online SFLEDS. De belyser även ett viktigt problem med att använda obalanserade dataset utan tillräcklig hänsyn till förbearbetning av datan och modelldesign. Slutligen visar resultaten att det inte finns något generellt samband mellan offline och online modeller som stämmer för både centraliserad och federerad inlärning när det gäller modellprestanda. Slutsatser. Den huvudsakliga slutsatsen från arbetet är att federerad online maskininlärning har stor potential för intrångsdetekteringssystem, men mer forskning krävs för att hitta den bästa modellen och de bästa parametrarna för att nå ett tillfredsställande resultat.
|
212 |
Semi-supervised structured prediction modelsBrefeld, Ulf 14 March 2008 (has links)
Das Lernen aus strukturierten Eingabe- und Ausgabebeispielen ist die Grundlage für die automatisierte Verarbeitung natürlich auftretender Problemstellungen und eine Herausforderung für das Maschinelle Lernen. Die Einordnung von Objekten in eine Klassentaxonomie, die Eigennamenerkennung und das Parsen natürlicher Sprache sind mögliche Anwendungen. Klassische Verfahren scheitern an der komplexen Natur der Daten, da sie die multiplen Abhängigkeiten und Strukturen nicht erfassen können. Zudem ist die Erhebung von klassifizierten Beispielen in strukturierten Anwendungsgebieten aufwändig und ressourcenintensiv, während unklassifizierte Beispiele günstig und frei verfügbar sind. Diese Arbeit thematisiert halbüberwachte, diskriminative Vorhersagemodelle für strukturierte Daten. Ausgehend von klassischen halbüberwachten Verfahren werden die zugrundeliegenden analytischen Techniken und Algorithmen auf das Lernen mit strukturierten Variablen übertragen. Die untersuchten Verfahren basieren auf unterschiedlichen Prinzipien und Annahmen, wie zum Beispiel der Konsensmaximierung mehrerer Hypothesen im Lernen aus mehreren Sichten, oder der räumlichen Struktur der Daten im transduktiven Lernen. Desweiteren wird in einer Fallstudie zur Email-Batcherkennung die räumliche Struktur der Daten ausgenutzt und eine Lösung präsentiert, die der sequenziellen Natur der Daten gerecht wird. Aus den theoretischen Überlegungen werden halbüberwachte, strukturierte Vorhersagemodelle und effiziente Optmierungsstrategien abgeleitet. Die empirische Evaluierung umfasst Klassifikationsprobleme, Eigennamenerkennung und das Parsen natürlicher Sprache. Es zeigt sich, dass die halbüberwachten Methoden in vielen Anwendungen zu signifikant kleineren Fehlerraten führen als vollständig überwachte Baselineverfahren. / Learning mappings between arbitrary structured input and output variables is a fundamental problem in machine learning. It covers many natural learning tasks and challenges the standard model of learning a mapping from independently drawn instances to a small set of labels. Potential applications include classification with a class taxonomy, named entity recognition, and natural language parsing. In these structured domains, labeled training instances are generally expensive to obtain while unlabeled inputs are readily available and inexpensive. This thesis deals with semi-supervised learning of discriminative models for structured output variables. The analytical techniques and algorithms of classical semi-supervised learning are lifted to the structured setting. Several approaches based on different assumptions of the data are presented. Co-learning, for instance, maximizes the agreement among multiple hypotheses while transductive approaches rely on an implicit cluster assumption. Furthermore, in the framework of this dissertation, a case study on email batch detection in message streams is presented. The involved tasks exhibit an inherent cluster structure and the presented solution exploits the streaming nature of the data. The different approaches are developed into semi-supervised structured prediction models and efficient optimization strategies thereof are presented. The novel algorithms generalize state-of-the-art approaches in structural learning such as structural support vector machines. Empirical results show that the semi-supervised algorithms lead to significantly lower error rates than their fully supervised counterparts in many application areas, including multi-class classification, named entity recognition, and natural language parsing.
|
213 |
Data Quality Evaluation and Improvement for Machine LearningChen, Haihua 05 1900 (has links)
In this research the focus is on data-centric AI with a specific concentration on data quality evaluation and improvement for machine learning. We first present a practical framework for data quality evaluation and improvement, using a legal domain as a case study and build a corpus for legal argument mining. We first created an initial corpus with 4,937 instances that were manually labeled. We define five data quality evaluation dimensions: comprehensiveness, correctness, variety, class imbalance, and duplication, and conducted a quantitative evaluation on these dimensions for the legal dataset and two existing datasets in the medical domain for medical concept normalization. The first group of experiments showed that class imbalance and insufficient training data are the two major data quality issues that negatively impacted the quality of the system that was built on the legal corpus. The second group of experiments showed that the overlap between the test datasets and the training datasets, which we defined as "duplication," is the major data quality issue for the two medical corpora. We explore several widely used machine learning methods for data quality improvement. Compared to pseudo-labeling, co-training, and expectation-maximization (EM), generative adversarial network (GAN) is more effective for automated data augmentation, especially when a small portion of labeled data and a large amount of unlabeled data is available. The data validation process, the performance improvement strategy, and the machine learning framework for data evaluation and improvement discussed in this dissertation can be used by machine learning researchers and practitioners to build high-performance machine learning systems. All the materials including the data, code, and results will be released at: https://github.com/haihua0913/dissertation-dqei.
|
214 |
Enkele tegnieke vir die ontwikkeling en benutting van etiketteringhulpbronne vir hulpbronskaars tale / A.C. GriebenowGriebenow, Annick January 2015 (has links)
Because the development of resources in any language is an expensive process, many languages, including the indigenous languages of South Africa, can be classified as being resource scarce, or lacking in tagging resources. This study investigates and applies techniques and methodologies for optimising the use of available resources and improving the accuracy of a tagger using Afrikaans as resource-scarce language and aims to i) determine whether combination techniques can be effectively applied to improve the accuracy of a tagger for Afrikaans, and ii) determine whether structural semi-supervised learning can be effectively applied to improve the accuracy of a supervised learning tagger for Afrikaans. In order to realise the first aim, existing methodologies for combining classification algorithms are investigated. Four taggers, trained using MBT, SVMlight, MXPOST and TnT respectively, are then combined into a combination tagger using weighted voting. Weights are calculated by means of total precision, tag precision and a combination of precision and recall. Although the combination of taggers does not consistently lead to an error rate reduction with regard to the baseline, it manages to achieve an error rate reduction of up to 18.48% in some cases. In order to realise the second aim, existing semi-supervised learning algorithms, with specific focus on structural semi-supervised learning, are investigated. Structural semi-supervised learning is implemented by means of the SVD-ASO-algorithm, which attempts to extract the shared structure of untagged data using auxiliary problems before training a tagger. The use of untagged data during the training of a tagger leads to an error rate reduction with regard to the baseline of 1.67%. Even though the error rate reduction does not prove to be statistically significant in all cases, the results show that it is possible to improve the accuracy in some cases. / MSc (Computer Science), North-West University, Potchefstroom Campus, 2015
|
215 |
Enkele tegnieke vir die ontwikkeling en benutting van etiketteringhulpbronne vir hulpbronskaars tale / A.C. GriebenowGriebenow, Annick January 2015 (has links)
Because the development of resources in any language is an expensive process, many languages, including the indigenous languages of South Africa, can be classified as being resource scarce, or lacking in tagging resources. This study investigates and applies techniques and methodologies for optimising the use of available resources and improving the accuracy of a tagger using Afrikaans as resource-scarce language and aims to i) determine whether combination techniques can be effectively applied to improve the accuracy of a tagger for Afrikaans, and ii) determine whether structural semi-supervised learning can be effectively applied to improve the accuracy of a supervised learning tagger for Afrikaans. In order to realise the first aim, existing methodologies for combining classification algorithms are investigated. Four taggers, trained using MBT, SVMlight, MXPOST and TnT respectively, are then combined into a combination tagger using weighted voting. Weights are calculated by means of total precision, tag precision and a combination of precision and recall. Although the combination of taggers does not consistently lead to an error rate reduction with regard to the baseline, it manages to achieve an error rate reduction of up to 18.48% in some cases. In order to realise the second aim, existing semi-supervised learning algorithms, with specific focus on structural semi-supervised learning, are investigated. Structural semi-supervised learning is implemented by means of the SVD-ASO-algorithm, which attempts to extract the shared structure of untagged data using auxiliary problems before training a tagger. The use of untagged data during the training of a tagger leads to an error rate reduction with regard to the baseline of 1.67%. Even though the error rate reduction does not prove to be statistically significant in all cases, the results show that it is possible to improve the accuracy in some cases. / MSc (Computer Science), North-West University, Potchefstroom Campus, 2015
|
216 |
應用共變異矩陣描述子及半監督式學習於行人偵測 / Semi-supervised learning for pedestrian detection with covariance matrix feature黃靈威, Huang, Ling Wei Unknown Date (has links)
行人偵測為物件偵測領域中一個極具挑戰性的議題。其主要問題在於人體姿勢以及衣著服飾的多變性,加之以光源照射狀況迥異,大幅增加了辨識的困難度。吾人在本論文中提出利用共變異矩陣描述子及結合單純貝氏分類器與級聯支持向量機的線上學習辨識器,以增進行人辨識之正確率與重現率。
實驗結果顯示,本論文所提出之線上學習策略在某些辨識狀況較差之資料集中能有效提升正確率與重現率達百分之十四。此外,即便於相同之初始訓練條件下,在USC Pedestrian Detection Test Set、 INRIA Person dataset 及 Penn-Fudan Database for Pedestrian Detection and Segmentation三個資料集中,本研究之正確率與重現率亦較HOG搭配AdaBoost之行人辨識方式為優。 / Pedestrian detection is an important yet challenging problem in object classification due to flexible body pose, loose clothing and ever-changing illumination. In this thesis, we employ covariance feature and propose an on-line learning classifier which combines naïve Bayes classifier and cascade support vector machine (SVM) to improve the precision and recall rate of pedestrian detection in a still image.
Experimental results show that our on-line learning strategy can improve precision and recall rate about 14% in some difficult situations. Furthermore, even under the same initial training condition, our method outperforms HOG + AdaBoost in USC Pedestrian Detection Test Set, INRIA Person dataset and Penn-Fudan Database for Pedestrian Detection and Segmentation.
|
217 |
Bidirectional Helmholtz MachinesShabanian, Samira 09 1900 (has links)
L'entraînement sans surveillance efficace et inférence dans les modèles génératifs profonds reste un problème difficile. Une approche assez simple, la machine de Helmholtz, consiste à entraîner du haut vers le bas un modèle génératif dirigé qui sera utilisé plus tard pour l'inférence approximative. Des résultats récents suggèrent que de meilleurs modèles génératifs peuvent être obtenus par de meilleures procédures d'inférence approximatives. Au lieu d'améliorer la procédure d'inférence, nous proposons ici un nouveau modèle, la machine de Helmholtz bidirectionnelle, qui garantit qu'on peut calculer efficacement les distributions de haut-vers-bas et de bas-vers-haut. Nous y parvenons en interprétant à les modèles haut-vers-bas et bas-vers-haut en tant que distributions d'inférence approximative, puis ensuite en définissant la distribution du modèle comme étant la moyenne géométrique de ces deux distributions. Nous dérivons une borne inférieure pour la vraisemblance de ce modèle, et nous démontrons que l'optimisation de cette borne se comporte en régulisateur. Ce régularisateur sera tel que la distance de Bhattacharyya sera minisée entre les distributions approximatives haut-vers-bas et bas-vers-haut. Cette approche produit des résultats de pointe en terme de modèles génératifs qui favorisent les réseaux significativement plus profonds. Elle permet aussi une inférence approximative amérliorée par plusieurs ordres de grandeur. De plus, nous introduisons un modèle génératif profond basé sur les modèles BiHM pour l'entraînement semi-supervisé. / Efficient unsupervised training and inference in deep generative models remains a challenging problem. One basic approach, called Helmholtz machine, involves training a top-down directed generative model together with a bottom-up auxiliary model used for approximate inference. Recent results indicate that better generative models can be obtained with better approximate inference procedures. Instead of improving the inference procedure, we here propose a new model, the bidirectional Helmholtz machine, which guarantees that the top-down and bottom-up distributions can efficiently invert each other. We achieve this by interpreting both the top-down and the bottom-up directed models as approximate inference distributions and by defining the model distribution to be the geometric mean of these two. We present a lower-bound for the likelihood of this model and we show that optimizing this bound regularizes the model so that the Bhattacharyya distance between the bottom-up and top-down approximate distributions is minimized. This approach results in state of the art generative models which prefer significantly deeper architectures while it allows for orders of magnitude more efficient approximate inference. Moreover, we introduce a deep generative model for semi-supervised learning problems based on BiHM models.
|
218 |
Classification automatique pour la compréhension de la parole : vers des systèmes semi-supervisés et auto-évolutifs / Machine learning applied to speech language understanding : towards semi-supervised and self-evolving systemsGotab, Pierre 04 December 2012 (has links)
La compréhension automatique de la parole est au confluent des deux grands domaines que sont la reconnaissance automatique de la parole et l'apprentissage automatique. Un des problèmes majeurs dans ce domaine est l'obtention d'un corpus de données conséquent afin d'obtenir des modèles statistiques performants. Les corpus de parole pour entraîner des modèles de compréhension nécessitent une intervention humaine importante, notamment dans les tâches de transcription et d'annotation sémantique. Leur coût de production est élevé et c'est la raison pour laquelle ils sont disponibles en quantité limitée.Cette thèse vise principalement à réduire ce besoin d'intervention humaine de deux façons : d'une part en réduisant la quantité de corpus annoté nécessaire à l'obtention d'un modèle grâce à des techniques d'apprentissage semi-supervisé (Self-Training, Co-Training et Active-Learning) ; et d'autre part en tirant parti des réponses de l'utilisateur du système pour améliorer le modèle de compréhension.Ce dernier point touche à un second problème rencontré par les systèmes de compréhension automatique de la parole et adressé par cette thèse : le besoin d'adapter régulièrement leurs modèles aux variations de comportement des utilisateurs ou aux modifications de l'offre de services du système / Two wide research fields named Speech Recognition and Machine Learning meet with the Automatic Speech Language Understanding. One of the main problems in this domain is to obtain a sufficient corpus to train an efficient statistical model. Such speech corpora need a lot of human involvement to transcript and semantically annotate them. Their production cost is therefore quite high and they are difficultly available.This thesis mainly aims at reducing the need of human intervention in two ways: firstly, reducing the amount of corpus needed to build a model thanks to some semi-supervised learning methods (Self-Training, Co-Training and Active-Learning); And lastly, using the answers of the system end-user to improve the comprehension model.This last point addresses another problem related to automatic speech understanding systems: the need to adapt their models to the fluctuation of end-user habits or to the modification of the services list offered by the system
|
219 |
Predicting Linguistic Structure with Incomplete and Cross-Lingual SupervisionTäckström, Oscar January 2013 (has links)
Contemporary approaches to natural language processing are predominantly based on statistical machine learning from large amounts of text, which has been manually annotated with the linguistic structure of interest. However, such complete supervision is currently only available for the world's major languages, in a limited number of domains and for a limited range of tasks. As an alternative, this dissertation considers methods for linguistic structure prediction that can make use of incomplete and cross-lingual supervision, with the prospect of making linguistic processing tools more widely available at a lower cost. An overarching theme of this work is the use of structured discriminative latent variable models for learning with indirect and ambiguous supervision; as instantiated, these models admit rich model features while retaining efficient learning and inference properties. The first contribution to this end is a latent-variable model for fine-grained sentiment analysis with coarse-grained indirect supervision. The second is a model for cross-lingual word-cluster induction and the application thereof to cross-lingual model transfer. The third is a method for adapting multi-source discriminative cross-lingual transfer models to target languages, by means of typologically informed selective parameter sharing. The fourth is an ambiguity-aware self- and ensemble-training algorithm, which is applied to target language adaptation and relexicalization of delexicalized cross-lingual transfer parsers. The fifth is a set of sequence-labeling models that combine constraints at the level of tokens and types, and an instantiation of these models for part-of-speech tagging with incomplete cross-lingual and crowdsourced supervision. In addition to these contributions, comprehensive overviews are provided of structured prediction with no or incomplete supervision, as well as of learning in the multilingual and cross-lingual settings. Through careful empirical evaluation, it is established that the proposed methods can be used to create substantially more accurate tools for linguistic processing, compared to both unsupervised methods and to recently proposed cross-lingual methods. The empirical support for this claim is particularly strong in the latter case; our models for syntactic dependency parsing and part-of-speech tagging achieve the hitherto best published results for a wide number of target languages, in the setting where no annotated training data is available in the target language.
|
220 |
Efficient end-to-end monitoring for fault management in distributed systems / La surveillance efficace de bout-à-bout pour la gestion des pannes dans les systèmes distribuésFeng, Dawei 27 March 2014 (has links)
Dans cette thèse, nous présentons notre travail sur la gestion des pannes dans les systèmes distribués, avec comme motivation principale le suivi de fautes et de changements brusques dans de grands systèmes informatiques comme la grille et le cloud.Au lieu de construire une connaissance complète a priori du logiciel et des infrastructures matérielles comme dans les méthodes traditionnelles de détection ou de diagnostic, nous proposons d'utiliser des techniques spécifiques pour effectuer une surveillance de bout en bout dans des systèmes de grande envergure, en laissant les détails inaccessibles des composants impliqués dans une boîte noire.Pour la surveillance de pannes d'un système distribué, nous modélisons tout d'abord cette application basée sur des sondes comme une tâche de prédiction statique de collaboration (CP), et démontrons expérimentalement l'efficacité des méthodes de CP en utilisant une méthode de la max margin matrice factorisation. Nous introduisons en outre l’apprentissage actif dans le cadre de CP et exposons son avantage essentiel dans le traitement de données très déséquilibrées, ce qui est particulièrement utile pour identifier la class de classe de défaut de la minorité.Nous étendons ensuite la surveillance statique de défection au cas séquentiel en proposant la méthode de factorisation séquentielle de matrice (SMF). La SMF prend une séquence de matrices partiellement observées en entrée, et produit des prédictions comportant des informations à la fois sur les fenêtres temporelles actuelle et passé. L’apprentissage actif est également utilisé pour la SMF, de sorte que les données très déséquilibrées peuvent être traitées correctement. En plus des méthodes séquentielles, une action de lissage pris sur la séquence d'estimation s'est avérée être une astuce pratique utile pour améliorer la performance de la prédiction séquentielle.Du fait que l'hypothèse de stationnarité utilisée dans le surveillance statique et séquentielle devient irréaliste en présence de changements brusques, nous proposons un framework en ligne semi-Supervisé de détection de changement (SSOCD) qui permette de détecter des changements intentionnels dans les données de séries temporelles. De cette manière, le modèle statique du système peut être recalculé une fois un changement brusque est détecté. Dans SSOCD, un procédé hors ligne non supervisé est proposé pour analyser un échantillon des séries de données. Les points de changement ainsi détectés sont utilisés pour entraîner un modèle en ligne supervisé, qui fournit une décision en ligne concernant la détection de changement à parti de la séquence de données en entrée. Les méthodes de détection de changements de l’état de l’art sont utilisées pour démontrer l'utilité de ce framework.Tous les travaux présentés sont vérifiés sur des ensembles de données du monde réel. Plus précisément, les expériences de surveillance de panne sont effectuées sur un ensemble de données recueillies auprès de l’infrastructure de grille Biomed faisant partie de l’European Grid Initiative et le framework de détection de changement brusque est vérifié sur un ensemble de données concernant le changement de performance d'un site en ligne ayant un fort trafic. / In this dissertation, we present our work on fault management in distributed systems, with motivating application roots in monitoring fault and abrupt change of large computing systems like the grid and the cloud. Instead of building a complete a priori knowledge of the software and hardware infrastructures as in conventional detection or diagnosis methods, we propose to use appropriate techniques to perform end-To-End monitoring for such large scale systems, leaving the inaccessible details of involved components in a black box.For the fault monitoring of a distributed system, we first model this probe-Based application as a static collaborative prediction (CP) task, and experimentally demonstrate the effectiveness of CP methods by using the max margin matrix factorization method. We further introduce active learning to the CP framework and exhibit its critical advantage in dealing with highly imbalanced data, which is specially useful for identifying the minority fault class.Further we extend the static fault monitoring to the sequential case by proposing the sequential matrix factorization (SMF) method. SMF takes a sequence of partially observed matrices as input, and produces predictions with information both from the current and history time windows. Active learning is also employed to SMF, such that the highly imbalanced data can be coped with properly. In addition to the sequential methods, a smoothing action taken on the estimation sequence has shown to be a practically useful trick for enhancing sequential prediction performance.Since the stationary assumption employed in the static and sequential fault monitoring becomes unrealistic in the presence of abrupt changes, we propose a semi-Supervised online change detection (SSOCD) framework to detect intended changes in time series data. In this way, the static model of the system can be recomputed once an abrupt change is detected. In SSOCD, an unsupervised offline method is proposed to analyze a sample data series. The change points thus detected are used to train a supervised online model, which gives online decision about whether there is a change presented in the arriving data sequence. State-Of-The-Art change detection methods are employed to demonstrate the usefulness of the framework.All presented work is verified on real-World datasets. Specifically, the fault monitoring experiments are conducted on a dataset collected from the Biomed grid infrastructure within the European Grid Initiative, and the abrupt change detection framework is verified on a dataset concerning the performance change of an online site with large amount of traffic.
|
Page generated in 0.0779 seconds