• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelo bayesiano para dados de sobrevivência com riscos semicompetitivos baseado em cópulas / Bayesian model for survival data with semicompeting risks based on copulas

Patiño, Elizabeth González 23 March 2018 (has links)
Motivados por um conjunto de dados de pacientes com insuficiência renal crônica (IRC), propomos uma nova modelagem bayesiana que envolve cópulas da família Arquimediana e um modelo misto para dados de sobrevivência com riscos semicompetitivos. A estrutura de riscos semicompetitivos é bastante comum em estudos clínicos em que dois eventos são de interesse, um intermediário e outro terminal, de forma tal que a ocorrência do evento terminal impede a ocorrência do intermediário mas não vice-versa. Nesta modelagem provamos que a distribuição a posteriori sob a cópula de Clayton é própria. Implementamos os algoritmos de dados aumentados e amostrador de Gibbs para a inferência bayesiana, assim como os criterios de comparação de modelos: LPML, DIC e BIC. Realizamos um estudo de simulação para avaliar o desempenho da modelagem e finalmente aplicamos a metodologia proposta para analisar os dados dos pacientes com IRC, além de outros de pacientes que receberam transplante de medula óssea. / Motivated by a dataset of patients with chronic kidney disease (CKD), we propose a new bayesian model including the Arquimedean copula and a mixed model for survival data with semicompeting risks. The structure of semicompeting risks appears frequently in clinical studies where two-types of events are involved: a nonterminal and a terminal event such that the occurrence of terminal event precludes the occurrence of the non-terminal event but not viceversa. In this work we prove that the posterior distribution is proper when the Clayton copula is used. We implement the data augmentation algorithm and Gibbs sampling for the bayesian inference, as well as some bayesian model selection criteria: LPML, BIC and DIC. We carry out a simulation study for assess the model performance and finally, our methodology is illustrated with the chronic kidney disease study.
2

Modelo bayesiano para dados de sobrevivência com riscos semicompetitivos baseado em cópulas / Bayesian model for survival data with semicompeting risks based on copulas

Elizabeth González Patiño 23 March 2018 (has links)
Motivados por um conjunto de dados de pacientes com insuficiência renal crônica (IRC), propomos uma nova modelagem bayesiana que envolve cópulas da família Arquimediana e um modelo misto para dados de sobrevivência com riscos semicompetitivos. A estrutura de riscos semicompetitivos é bastante comum em estudos clínicos em que dois eventos são de interesse, um intermediário e outro terminal, de forma tal que a ocorrência do evento terminal impede a ocorrência do intermediário mas não vice-versa. Nesta modelagem provamos que a distribuição a posteriori sob a cópula de Clayton é própria. Implementamos os algoritmos de dados aumentados e amostrador de Gibbs para a inferência bayesiana, assim como os criterios de comparação de modelos: LPML, DIC e BIC. Realizamos um estudo de simulação para avaliar o desempenho da modelagem e finalmente aplicamos a metodologia proposta para analisar os dados dos pacientes com IRC, além de outros de pacientes que receberam transplante de medula óssea. / Motivated by a dataset of patients with chronic kidney disease (CKD), we propose a new bayesian model including the Arquimedean copula and a mixed model for survival data with semicompeting risks. The structure of semicompeting risks appears frequently in clinical studies where two-types of events are involved: a nonterminal and a terminal event such that the occurrence of terminal event precludes the occurrence of the non-terminal event but not viceversa. In this work we prove that the posterior distribution is proper when the Clayton copula is used. We implement the data augmentation algorithm and Gibbs sampling for the bayesian inference, as well as some bayesian model selection criteria: LPML, BIC and DIC. We carry out a simulation study for assess the model performance and finally, our methodology is illustrated with the chronic kidney disease study.
3

Análise de dados com riscos semicompetitivos / Analysis of Semicompeting Risks Data

Elizabeth Gonzalez Patino 16 August 2012 (has links)
Em análise de sobrevivência, usualmente o interesse esté em estudar o tempo até a ocorrência de um evento. Quando as observações estão sujeitas a mais de um tipo de evento (por exemplo, diferentes causas de óbito) e a ocorrência de um evento impede a ocorrência dos demais, tem-se uma estrutura de riscos competitivos. Em algumas situações, no entanto, o interesse está em estudar dois eventos, sendo que um deles (evento terminal) impede a ocorrência do outro (evento intermediário), mas não vice-versa. Essa estrutura é conhecida como riscos semicompetitivos e foi definida por Fine et al.(2001). Neste trabalho são consideradas duas abordagens para análise de dados com essa estrutura. Uma delas é baseada na construção da função de sobrevivência bivariada por meio de cópulas da família Arquimediana e estimadores para funções de sobrevivência são obtidos. A segunda abordagem é baseada em um processo de três estados, conhecido como processo doença-morte, que pode ser especificado pelas funções de intensidade de transição ou funções de risco. Neste caso, considera-se a inclusão de covariáveis e a possível dependência entre os dois tempos observados é incorporada por meio de uma fragilidade compartilhada. Estas metodologias são aplicadas a dois conjuntos de dados reais: um de 137 pacientes com leucemia, observados no máximo sete anos após transplante de medula óssea, e outro de 1253 pacientes com doença renal crônica submetidos a diálise, que foram observados entre os anos 2009-2011. / In survival analysis, usually the interest is to study the time until the occurrence of an event. When observations are subject to more than one type of event (e.g, different causes of death) and the occurrence of an event prevents the occurrence of the other, there is a competing risks structure. In some situations, nevertheless, the main interest is to study two events, one of which (terminal event) prevents the occurrence of the other (nonterminal event) but not vice versa. This structure is known as semicompeting risks, defined initially by Fine et al. (2001). In this work, we consider two approaches for analyzing data with this structure. One approach is based on the bivariate survival function through Archimedean copulas and estimators for the survival functions are obtained. The second approach is based on a process with three states, known as Illness-Death process, which can be specified by the transition intensity functions or risk functions. In this case, the inclusion of covariates and a possible dependence between the two times is taken into account by a shared frailty. These methodologies are applied to two data sets: the first one is a study with 137 patients with leukemia that received an allogeneic marrow transplant, with maximum follow up of 7 years; the second is a data set of 1253 patientswith chronic kidney disease on dialysis treatment, followed from 2009 until 2011.
4

Análise de dados com riscos semicompetitivos / Analysis of Semicompeting Risks Data

Patino, Elizabeth Gonzalez 16 August 2012 (has links)
Em análise de sobrevivência, usualmente o interesse esté em estudar o tempo até a ocorrência de um evento. Quando as observações estão sujeitas a mais de um tipo de evento (por exemplo, diferentes causas de óbito) e a ocorrência de um evento impede a ocorrência dos demais, tem-se uma estrutura de riscos competitivos. Em algumas situações, no entanto, o interesse está em estudar dois eventos, sendo que um deles (evento terminal) impede a ocorrência do outro (evento intermediário), mas não vice-versa. Essa estrutura é conhecida como riscos semicompetitivos e foi definida por Fine et al.(2001). Neste trabalho são consideradas duas abordagens para análise de dados com essa estrutura. Uma delas é baseada na construção da função de sobrevivência bivariada por meio de cópulas da família Arquimediana e estimadores para funções de sobrevivência são obtidos. A segunda abordagem é baseada em um processo de três estados, conhecido como processo doença-morte, que pode ser especificado pelas funções de intensidade de transição ou funções de risco. Neste caso, considera-se a inclusão de covariáveis e a possível dependência entre os dois tempos observados é incorporada por meio de uma fragilidade compartilhada. Estas metodologias são aplicadas a dois conjuntos de dados reais: um de 137 pacientes com leucemia, observados no máximo sete anos após transplante de medula óssea, e outro de 1253 pacientes com doença renal crônica submetidos a diálise, que foram observados entre os anos 2009-2011. / In survival analysis, usually the interest is to study the time until the occurrence of an event. When observations are subject to more than one type of event (e.g, different causes of death) and the occurrence of an event prevents the occurrence of the other, there is a competing risks structure. In some situations, nevertheless, the main interest is to study two events, one of which (terminal event) prevents the occurrence of the other (nonterminal event) but not vice versa. This structure is known as semicompeting risks, defined initially by Fine et al. (2001). In this work, we consider two approaches for analyzing data with this structure. One approach is based on the bivariate survival function through Archimedean copulas and estimators for the survival functions are obtained. The second approach is based on a process with three states, known as Illness-Death process, which can be specified by the transition intensity functions or risk functions. In this case, the inclusion of covariates and a possible dependence between the two times is taken into account by a shared frailty. These methodologies are applied to two data sets: the first one is a study with 137 patients with leukemia that received an allogeneic marrow transplant, with maximum follow up of 7 years; the second is a data set of 1253 patientswith chronic kidney disease on dialysis treatment, followed from 2009 until 2011.
5

Statistical analysis of clinical trial data using Monte Carlo methods

Han, Baoguang 11 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In medical research, data analysis often requires complex statistical methods where no closed-form solutions are available. Under such circumstances, Monte Carlo (MC) methods have found many applications. In this dissertation, we proposed several novel statistical models where MC methods are utilized. For the first part, we focused on semicompeting risks data in which a non-terminal event was subject to dependent censoring by a terminal event. Based on an illness-death multistate survival model, we proposed flexible random effects models. Further, we extended our model to the setting of joint modeling where both semicompeting risks data and repeated marker data are simultaneously analyzed. Since the proposed methods involve high-dimensional integrations, Bayesian Monte Carlo Markov Chain (MCMC) methods were utilized for estimation. The use of Bayesian methods also facilitates the prediction of individual patient outcomes. The proposed methods were demonstrated in both simulation and case studies. For the second part, we focused on re-randomization test, which is a nonparametric method that makes inferences solely based on the randomization procedure used in clinical trials. With this type of inference, Monte Carlo method is often used for generating null distributions on the treatment difference. However, an issue was recently discovered when subjects in a clinical trial were randomized with unbalanced treatment allocation to two treatments according to the minimization algorithm, a randomization procedure frequently used in practice. The null distribution of the re-randomization test statistics was found not to be centered at zero, which comprised power of the test. In this dissertation, we investigated the property of the re-randomization test and proposed a weighted re-randomization method to overcome this issue. The proposed method was demonstrated through extensive simulation studies.

Page generated in 0.0879 seconds