Spelling suggestions: "subject:"semiflows"" "subject:"semiflexible""
1 |
Structure of attractors and estimates of their fractal dimension / Estrutura de atratores e estimativas de suas dimensões fractaisBortolan, Matheus Cheque 08 March 2013 (has links)
This work is dedicated to the study of the structure of attractors of dynamical systems with the objective of estimating their fractal dimension. First we study the case of exponential global attractors of some generalized gradient-like semigroups in a general Banach space, and estimate their fractal dimension in terms of themaximumof the dimension of the local unstablemanifolds of the isolated invariant sets, Lipschitz properties of the semigroup and rate of exponential attraction. We also generalize this result for some special evolution processes, introducing a concept of Morse decomposition with pullback attractivity. Under suitable assumptions, if (A, \'A POT. \') is an attractor-repeller pair for the attractor A of a semigroup {T (t ) : t 0}, then the fractal dimension of A can be estimated in terms of the fractal dimension of the local unstable manifold of \'A POT. \', the fractal dimension of A, the Lipschitz properties of the semigroup and the rate of the exponential attraction. The ingredients of the proof are the notion of generalized gradient-like semigroups and their regular attractors, Morse decomposition and a fine analysis of the structure of the attractors. Also, making use of the skew product semiflow and its Morse decomposition, we give some estimates of the fractal dimension of the pullback attractors of non-autonomous dynamical systems / Este trabalho é dedicado ao estudo da estrutura dos atratores de sistemas dinâmicos com o objetivo de obter estimativas de suas dimensões fractais. Primeiramente estudamos o caso de atratores globais exponenciais de alguns semigrupos gradient-like generalizados em um espaço de Banach geral, e estimamos suas dimensões fractais em termos da máxima dimensão das variedades instáveis locais dos conjuntos invariantes isolados, a propriedades de Lipschitz do semigrupo e da taxa de atração exponencial. Também generalizamos este resultado para alguns processos de evoluções especiais, introduzindo um conceito de decomposição de Morse com atração pullback. Sob hipóteses apropriadas, se (A, \'A POT. \') é um par atrator-repulsor para o atratorA de um semigrupo {T (t ) : t 0}, então a dimensão fractal de A pode ser estimada em termos da dimensão fractal da variedade instável de \'A POT. \', a dimensão fractal de A, as propriedades de Lipschitz do semigrupo e a taxa de atração exponencial. Os ingredientes da demonstração são a noção de semigrupos gradient-like e seus atratores regulares, decomposição de Morse e uma análise fina da estrutura dos atratores. Além disto, fazendo uso do skew product semiflow e sua decomposição de Morse, damos estimativas da dimensão fractal dos atratores pullback de sistêmas dinâmicos não-autônomos
|
2 |
Structure of attractors and estimates of their fractal dimension / Estrutura de atratores e estimativas de suas dimensões fractaisMatheus Cheque Bortolan 08 March 2013 (has links)
This work is dedicated to the study of the structure of attractors of dynamical systems with the objective of estimating their fractal dimension. First we study the case of exponential global attractors of some generalized gradient-like semigroups in a general Banach space, and estimate their fractal dimension in terms of themaximumof the dimension of the local unstablemanifolds of the isolated invariant sets, Lipschitz properties of the semigroup and rate of exponential attraction. We also generalize this result for some special evolution processes, introducing a concept of Morse decomposition with pullback attractivity. Under suitable assumptions, if (A, \'A POT. \') is an attractor-repeller pair for the attractor A of a semigroup {T (t ) : t 0}, then the fractal dimension of A can be estimated in terms of the fractal dimension of the local unstable manifold of \'A POT. \', the fractal dimension of A, the Lipschitz properties of the semigroup and the rate of the exponential attraction. The ingredients of the proof are the notion of generalized gradient-like semigroups and their regular attractors, Morse decomposition and a fine analysis of the structure of the attractors. Also, making use of the skew product semiflow and its Morse decomposition, we give some estimates of the fractal dimension of the pullback attractors of non-autonomous dynamical systems / Este trabalho é dedicado ao estudo da estrutura dos atratores de sistemas dinâmicos com o objetivo de obter estimativas de suas dimensões fractais. Primeiramente estudamos o caso de atratores globais exponenciais de alguns semigrupos gradient-like generalizados em um espaço de Banach geral, e estimamos suas dimensões fractais em termos da máxima dimensão das variedades instáveis locais dos conjuntos invariantes isolados, a propriedades de Lipschitz do semigrupo e da taxa de atração exponencial. Também generalizamos este resultado para alguns processos de evoluções especiais, introduzindo um conceito de decomposição de Morse com atração pullback. Sob hipóteses apropriadas, se (A, \'A POT. \') é um par atrator-repulsor para o atratorA de um semigrupo {T (t ) : t 0}, então a dimensão fractal de A pode ser estimada em termos da dimensão fractal da variedade instável de \'A POT. \', a dimensão fractal de A, as propriedades de Lipschitz do semigrupo e a taxa de atração exponencial. Os ingredientes da demonstração são a noção de semigrupos gradient-like e seus atratores regulares, decomposição de Morse e uma análise fina da estrutura dos atratores. Além disto, fazendo uso do skew product semiflow e sua decomposição de Morse, damos estimativas da dimensão fractal dos atratores pullback de sistêmas dinâmicos não-autônomos
|
3 |
Semigroupes d'opérateurs de composition sur des espaces de Hardy pondérés / Semigroups of composition operators on weighted Hardy spacesAvicou, Corentin 09 November 2015 (has links)
Cette thèse se situe à l'intersection de plusieurs domaines mathématiques particulièrement actifs actuellement : l'analyse fonctionnelle, la théorie des opérateurs, la dynamique complexe et la théorie des semigroupes. Nous étudierons ici les semigroupes d'opérateurs de composition sur quelques espaces de Hardy pondérés, notamment l'espace de Hardy du disque et l'espace de Dirichlet. Dans un premier temps, nous allons voir pourquoi se placer à cette intersection est pertinent, en montrant comment utiliser les propriétés des semigroupes pour calculer explicitement les normes de certains opérateurs de composition. Dans un second temps, nous étudierons les propriétés des semigroupes d'opérateurs de compositions qui sont directement accessibles à partir de la seule donnée du générateur infinitésimal du semigroupe, en nous concentrant tout particulièrement sur les notions d'analyticité et de compacité / This thesis takes place at the intersection of several particularly active mathematical areas : functional analysis, operator theory, complex dynamics and theory of semigroups. Here, we study semigroups of composition operators on some weighted Hardy spaces, in particular the Hardy space of the disk and the Dirichlet space. First, we will show why this intersection is relevant for our study, pointing out how to use the properties of semigroups to explicitly compute the norms of some composition operators. Secondly, we will study the properties of semigroups of composition operators that are directly accessible from the only data of the infinitesimal generator, focusing on analyticity and compactness
|
4 |
A class of state-dependent delay differential equations and applications to forest growth / Études d'une classe d'équations à retard dépendant de l'état et application à la croissance de forêtsZhang, Zhengyang 14 May 2018 (has links)
Cette thèse est consacrée à l'étude d'une classe d'équations différentielles à retard dépendant de l'état -- ces équations provenant d'un modèle structuré en taille. La principale motivation de cette thèse provient de la volonté d'ajuster les paramètres du système d'équations étudiées vis-à-vis des données générées par un simulateur de forêts, appelé SORTIE. Deux types de forêts sont étudiés ici: d'une part une forêt ne comportant qu'une seule espèce d'arbre, et d'autre part une forêt comportant deux espèces d'arbres (au chapitre 2). Les simulations numériques du système d'équations correspondent relativement bien aux données générées par SORTIE, ce qui montre que le système considéré peut être utilisé afin d'écrire la dynamique de populations d'une forêt. De plus, un modèle plus étendu prenant en compte la position spatiale des arbres est proposé dans le chapitre 2, dans le cas de forêts possédant deux espèces d'arbres. Les simulations numériques de ce modèle permettent de visualiser la propagation spatiale des forêts. Les chapitres 3 et 4 se concentrent sur l'analyse mathématique des équations différentielles à retard considérées. Les propriétés du semi-flot associé au système sont étudiées au chapitre 3, où l'on démontre en particulier que ce semi-flot n'est pas continu en temps. Le caractère dissipatif et borné du semi-flot, pour des modèles de forêts comportant une ou deux espèces d'arbres, est étudié dans le chapitre 4. En outre, afin d'étudier la dynamique de population d'une forêt (d'une seule espèce d'arbre) après l'introduction d'un parasite, nous construisons dans le chapitre 5 un système proie-prédateur dont la proie (à savoir la forêt) est modélisée par le système d'équations différentielles à retard dépendant de l'état étudié auparavant, et dont le prédateur (à savoir le parasite) est modélisé par une équation différentielle ordinaire. De nombreuses simulations numériques associées à différents scénarios sont faites, afin d'explorer le comportement complexe des solutions du au couplage proie-prédateur et les équations à retard dépendant de l'état. / This thesis is devoted to the studies of a class of state-dependent delay differential equations. This class of equations is derived from a size-structured model.The motivation comes from the parameter fittings of this system to a forest simulator called SORTIE. Cases of both single species forest and two-species forest are considered in Chapter 2. The numerical simulations of the system correspond relatively very well to the forest data generated by SORTIE, which shows that this system is able to be used to describe the population dynamics of forests. Moreover, an extended model considering the spatial positions of trees is also proposed in Chapter 2 for the two-species forest case. From the numerical simulations of this spatial model one can see the diffusion of forests in space. Chapter 3 and 4 focus on the mathematical analysis of the state-dependent delay differential equations. The properties of semiflow generated by this system are studied in Chapter 3, where we find that this semiflow is not time-continuous. The boundedness and dissipativity of the semiflow for both single species model and multi-species model are studied in Chapter 4. Furthermore, in order to study the population dynamics after the introduction of parasites into a forest, a predator-prey system consisting of the above state-dependent delay differential equation (describing the forest) and an ordinary differential equation (describing the parasites) is constructed in Chapter 5 (only the single species forest is considered here). Numerical simulations in several scenarios and cases are operated to display the complex behaviours of solutions appearing in this system with the predator-prey relation and the state-dependent delay.
|
5 |
Dynamics of strongly continuous semigroups associated to certain differential equationsAroza Benlloch, Javier 09 November 2015 (has links)
[EN] The purpose of the Ph.D. Thesis "Dynamics of strongly continuous semigroups associated to certain differential equations'' is to analyse, from the point of view of functional analysis, the dynamics of solutions of linear evolution equations. These solutions can be represented by a strongly continuous semigroup on an infinite-dimensional Banach space. The aim of our research is to provide global conditions for chaos, in the sense of Devaney, and stability properties of strongly continuous semigroups which are solutions of linear evolution equations.
This work is composed of three principal chapters. Chapter 0 is introductory and defines basic terminology and notation used, besides presenting the basic results that we will use throughout this thesis. Chapters 1 and 2 describe, in general way, a strongly continuous semigroup induced by a semiflow in Lebesgue and Sobolev spaces which is a solution of a linear first order partial differential equation. Moreover, some characterizations of the main dynamical properties, including hypercyclicity, mixing, weakly mixing, chaos and stability are given along these chapters. Chapter 3 describes the dynamical properties of a difference equation based on the so-called birth-and-death model and analyses the conditions previously proven for this model improving them by employing a different strategy.
The goal of this thesis is to characterize dynamical properties of these kind of strongly continuous semigroups in a general way, whenever possible, and to extend these results to another spaces. Along this memory, these findings are compared with the previous ones given by many authors in recent years. / [ES] La presente memoria "Dinámica de semigrupos fuertemente continuos asociadas a ciertas ecuaciones diferenciales'' es analizar, desde el punto de vista del análisis funcional, la dinámica de las soluciones de ecuaciones de evolución lineales. Estas soluciones pueden ser representadas por semigrupos fuertemente continuos en espacios de Banach de dimensión infinita. El objetivo de nuestra investigación es proporcionar condiciones globales para obtener caos, en el sentido de Devaney, y propiedades de estabilidad de semigrupos fuertemente continuos, los cuales son soluciones de ecuaciones de evolución lineales.
Este trabajo está compuesto de tres capítulos principales. El Capítulo 0 es introductorio y define la terminología básica y notación usada, además de presentar los resultados básicos que usaremos a lo largo de esta tesis. Los Capítulos 1 y 2 describen, de forma general, un semigrupo fuertemente continuo inducido por un semiflujo en espacios de Lebesgue y en espacios de Sobolev, los cuales son solución de una ecuación diferencial lineal en derivadas parciales de primer orden. Además, algunas caracterizaciones de las principales propiedades dinámicas, incluyendo hiperciclicidad, mezclante, débil mezclante, caos y estabilidad, se obtienen a lo largo de estos capítulos. El Capítulo 3 describe las propiedades dinámicas de una ecuación en diferencias basada en el llamado modelo de nacimiento-muerte y analiza las condiciones previamente probadas para este modelo, mejorándolas empleando una estrategia diferente.
La finalidad de esta tesis es caracterizar propiedades dinámicas para este tipo de semigrupos fuertemente continuos de forma general, cuando sea posible, y extender estos resultados a otros espacios. A lo largo de esta memoria, estos resultados son comparados con los resultados previos dados por varios autores en años recientes. / [CA] La present memòria "Dinàmica de semigrups fortament continus associats a certes equacions diferencials'' és analitzar, des del punt de vista de l'anàlisi funcional, la dinàmica de les solucions d'equacions d'evolució lineals. Aquestes solucions poden ser representades per semigrups fortament continus en espais de Banach de dimensió infinita. L'objectiu de la nostra investigació es proporcionar condicions globals per obtenir caos, en el sentit de Devaney, i propietats d'estabilitat de semigrups fortament continus, els quals són solucions d'equacions d'evolució lineals.
Aquest treball està compost de tres capítols principals. El Capítol 0 és introductori i defineix la terminologia bàsica i notació utilitzada, a més de presentar els resultats bàsics que utilitzarem al llarg d'aquesta tesi. Els Capítols 1 i 2 descriuen, de forma general, un semigrup fortament continu induït per un semiflux en espais de Lebesgue i en espais de Sobolev, els quals són solució d'una equació diferencial lineal en derivades parcials de primer ordre. A més, algunes caracteritzacions de les principals propietats dinàmiques, incloent-hi hiperciclicitat, mesclant, dèbil mesclant, caos i estabilitat, s'obtenen al llarg d'aquests capítols. El Capítol 3 descrivís les propietats dinàmiques d'una equació en diferències basada en el model de naixement-mort i analitza les condicions prèviament provades per aquest model, millorant-les utilitzant una estratègia diferent.
La finalitat d'aquesta tesi és caracteritzar propietats dinàmiques d'aquest tipus de semigrups fortament continus de forma general, quan siga possible, i estendre aquests resultats a altres espais. Al llarg d'aquesta memòria, aquests resultats són comparats amb els resultats previs obtinguts per diversos autors en anys recents. / Aroza Benlloch, J. (2015). Dynamics of strongly continuous semigroups associated to certain differential equations [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/57186
|
Page generated in 0.0408 seconds