Spelling suggestions: "subject:"sensitized solarcells"" "subject:"sensitized solarcell""
51 |
Photoanode and counter electrode modification for more efficient dye sensitized solar cellsZheng, Yichen January 1900 (has links)
Master of Science / Department of Chemistry / Jun Li / With the increasing consumption of energy and the depletion of fossil fuels, finding an alternative energy source is critical. Solar energy is one of the most promising energy sources and solar cells are the devices that convert solar radiation into electricity. Currently, the most widely used solar cell is based on p-n junction formed with crystalline silicon materials. While showing high efficiency, the high fabrication cost limits its broad applications. Dye sensitized solar cell (DSSC) is a promising low-cost alternative to the Si solar cell, but its efficiency is much lower. Improvements in materials and interfaces are needed to increase the DSSC efficiency while maintain the low cost. In this thesis, three projects were investigated to optimize the DSSC efficiency and reduce the cost. The first project is to optimize the TiO[subscript]2 barrier layers on Fluorine-doped Tin Dioxide (FTO) surface. Two preparation methods, i.e. TiCl[subscript]4 solution treatment and thermal oxidation of sputtered Ti metal films, were employed and systematically studied in order to minimize electron-hole recombination and electron backflow during photovoltaic processes of DSSCs. TiCl[subscript]4 solution treatment method was found to create a porous TiO[subscript]2 barrier layer. Ti sputtering method created a very compact TiO[subscript]2 blocking layer. Two methods showed different characteristics and may be used for different DSSC studies. The second project is to reduce the DSSC cost while maintaining the efficiency by replacing the expensive Pt counter electrode with a novel vertically aligned carbon nanofiber (VACNF) electrode. A large specific electrode surface area (~125 cm[superscript]2 over 1 cm[superscript]2 geometric area) was obtained by using VACNFs. The relatively high surface area, good electric conductivity and the large numbers of active graphitic edges existed in cone-like microstructure of VACNFs were employed to improve redox reaction rate of I[subscript]3[superscript]-/I[superscript]- mediators in the electrolyte. Faster electron transfer and good catalytic activities were obtained with such counter electrodes. The third project is to develop a metal organic chemical vapor deposition (MOCVD) method to coat TiO[subscript]2 shells on VACNF arrays as potential photoanodes in the DSSC system in order to improve the electron transfer. Fabrication processes were demonstrated and preliminary materials were characterized with scanning electron microscopy and transmission electron microscopy. MOCVD at 300 mTorr vapor pressure at 550° C for 120 min was found to be the optimal condition.
|
52 |
Developing Environmentally Friendly Dye-sensitized Solar CellsEllis, Hanna January 2016 (has links)
Due to climate change and its effects, alternative renewable energy sources are needed in the future human society. In the work of this thesis, the Dye-sensitized Solar Cell (DSC) has been investigated and characterized. DSCs are appealing as energy conversion devices, since they have high potential to provide low cost solar light to electricity conversion. The DSC is built up by a working electrode consisting of a conductive glass substrate with a dye-sensitized mesoporous TiO2 film, a counter electrode with a catalyst and, in between, the electrolyte which performs the charge transport by means of a redox mediator. The aim of this thesis was to develop and evaluate cheap and environmentally friendly materials for the DSC. An alternative polymer-based counter electrode catalyst was fabricated and evaluated, showing that the PEDOT catalyst counter electrode outperformed the platinum catalyst counter electrode. Different organic dyes were evaluated and it was found that the dye architecture affected the performance of the assembled DSCs. A partly hydrophilic organic triphenylamine dye was developed and applied in water-based electrolyte DSCs. The partly hydrophilic dye outperformed the reference hydrophobic dye. Small changes in dye architecture were evaluated for two similar dyes, both by spectroscopic and electrochemical techniques. A change in the length of the dialkoxyphenyl units on a triphenylamine dye, affected the recombination and the regeneration electron transfer kinetics in the DSC system. Finally, three water soluble cobalt redox couples were developed and applied in water-based electrolyte DSCs. An average efficiency of 5.5% (record efficiency of 5.7%) for a 100% water-based electrolyte DSC was achieved with the polymer-based catalyst counter electrode and an organic dye with short dimethoxyphenyl units, improving the wetting and the regeneration process.
|
53 |
Ultra-high aspect ratio copper nanowires as transparent conductive electrodes for dye sensitized solar cellsZhu, Zhaozhao, Mankowski, Trent, Shikoh, Ali Sehpar, Touati, Farid, Benammar, Mohieddine A., Mansuripur, Masud, Falco, Charles M. 23 September 2016 (has links)
We report the synthesis of ultra-high aspect ratio copper nanowires (CuNW) and fabrication of CuNW-based transparent conductive electrodes (TCE) with high optical transmittance (> 80%) and excellent sheet resistance (R-s < 30 Omega/sq). These CuNW TCEs are subsequently hybridized with aluminum-doped zinc oxide (AZO) thin-film coatings, or platinum thinfilm coatings, or nickel thin-film coatings. Our hybrid transparent electrodes can replace indium tin oxide (ITO) films in dye-sensitized solar cells (DSSCs) as either anodes or cathodes. We highlight the challenges of integrating bare CuNWs into DSSCs, and demonstrate that hybridization renders the solar cell integrations feasible. The CuNW/AZO-based DSSCs have reasonably good open-circuit voltage (V-oc = 720 mV) and short-circuit current-density (J(sc) = 0.96 mA/cm(2)), which are comparable to what is obtained with an ITO-based DSSC fabricated with a similar process. Our CuNW-Ni based DSSCs exhibit a good open-circuit voltage (V-oc = 782 mV) and a decent short-circuit current (J(sc) = 3.96 mA/cm2), with roughly 1.5% optical-to-electrical conversion efficiency.
|
54 |
Electrolyte-Based Dynamics: Fundamental Studies for Stable Liquid Dye-Sensitized Solar CellsGao, Jiajia January 2016 (has links)
The long-term outdoor durability of dye-sensitized solar cells (DSSCs) is still a challenging issue for the large-scale commercial application of this promising photovoltaic technique. In order to study the degradation mechanism of DSSCs, ageing tests under selected accelerating conditions were carried out. The electrolyte is a crucial component of the device. The interactions between the electrolyte and other device components were unraveled during the ageing test, and this is the focus of this thesis. The dynamics and the underlying effects of these interactions on the DSSC performance were studied. Co(bpy)32+/3+-mediated solar cells sensitized by triphenylamine-based organic dyes are systems of main interest. The changes with respect to the configuration of both labile Co(bpy)32+ and apparently inert Co(bpy)33+ redox complexes under different ageing conditions have been characterized, emphasizing the ligand exchange problem due to the addition of Lewis-base-type electrolyte additives and the unavoidable presence of oxygen. Both beneficial and adverse effects on the DSSC performance have been separately discussed in the short-term and long-term ageing tests. The stability of dye molecules adsorbed on the TiO2 surface and dissolved in the electrolyte has been studied by monitoring the spectral change of the dye, revealing the crucial effect of cation-based additives and the cation-dependent stability of the device photovoltage. The dye/TiO2 interfacial electron transfer kinetics were compared for the bithiophene-linked dyes before and after ageing in the presence of Lewis base additives; the observed change being related to the light-promoted and Lewis-base-assisted performance enhancement. The effect of electrolyte co-additives on passivating the counter electrode was also observed. The final chapter shows the effect of electrolyte composition on the electrolyte diffusion limitation from the perspectives of cation additive options, cation concentration and solvent additives respectively. Based on a comprehensive analysis, suggestions have been made regarding lithium-ion-free and polymer-in-salt strategies, and also regarding cobalt complex degradation and the crucial role of Lewis base additives. The fundamental studies contribute to the understanding of DSSC chemistry and provide a guideline towards achieving efficient and stable DSSCs. / <p>QC 20160517</p>
|
55 |
Charge transport in disordered semiconductors in solid state sensitized solar cells : influence on performance and stabilityLeijtens, Tomas January 2014 (has links)
This thesis studies parameters influencing both the performance and stability of solid state sensitized solar cells (ssSSCs). ssSSCs benefit from their low materials and manufacturing processing costs, a consequence of using solution processed materials. However, solution processed materials are often structurally and electronically disordered. By characterizing fully operational ssSSCs and their charge transport properties, this thesis elucidates the factors limiting charge transport and proposes routes towards both improved photovoltaic conversion efficiency and long-term stability. Chapter 2 provides an explanation of the operation of ssSSCs, while Chapter 3 discusses the basic methods used in this thesis. Having set this background, Chapter 4 explores the interaction between atmospheric oxygen and charge doping mechanisms in the organic semiconductors used in ssSSCs. To understand the implications of the findings presented in Chapter 4, a new technique, “transient mobility spectroscopy”, was developed to understand the evolution of balanced charge transport behaviour of disordered semiconductors at different operating conditions in ssSSCs. This technique is presented in full in Chapter 5. The understanding gained in Chapters 4 and 5 suggest that alternative light absorbers with higher extinction coefficients may be beneficial to improving the performance of ssSSCs. Chapter 6 discusses the use of an organometal trihalide perovskite, as light absorber in ssSSCs. Using time resolved techniques, the charge transport and recombination mechanisms in various device architectures are explored, allowing suggestions to be made towards future improvements. Chapter 7 uses the technique presented in Chapter 5 to understand a rapid degradation mechanism of working ssSSCs. Particular focus is placed on the titanium dioxide charge-transporting layer. Building on this newfound understanding, two methods for attaining stable photovoltaic performance are provided, a great step forward for this technology.
|
56 |
The Effects of Phosphonic Acids in Dye-Sensitized Solar CellsJames, Keith Edward 26 May 2016 (has links)
Novel methods for the construction of dye-sensitized solar cells (DSSCs) were developed. A thin dense underlayer of TiO2 was applied on fluorine-doped tin oxide (FTO) glass using as a precursor Tyzor AA-105. Subsequently a mesoporous film of P-25 TiO2 was applied by spreading a suspension uniformly over the surface of the underlayer and allowing the plate to slowly dry while resting on a level surface. After sintering at 500° C slides were treated with TCPP as a sensitizing dye and assembled into DSSCs. A novel method was used to seal the cells; strips of Parafilm® were used as spacers between the electrodes and to secure the electrodes together. The cells were filled with a redox electrolyte and sealed by dipping into molten paraffin.
A series of phosphonic acids and one arsonic acid were employed as coadsorbates in DSSCs. The coadsorbates were found to compete for binding sites, resulting in lower levels of dye adsorption. The resulting loss of photocurrent was not linear with the reduction of dye loading, and in some cases photocurrent and efficiency were higher for cells with lower levels of dye loading.
Electrodes were treated with coadsorbates by procedures including pre-adsorption, simultaneous (sim-adsorption), and post-adsorption, using a range of concentrations and treatment times and a variety of solvents. Most cells were tested using an iodide-triiodide based electrolyte (I3I-1) but some cells were tested using electrolytes based on a Co(II)/Co(III) redox couple (CoBpy electrolytes). Phosphonic acid post-adsorbates increased the Voc of cells using CoBpy electrolytes but caused a decrease in the Voc of cells using I3I-1 electrolyte. Phosphonic acids as sim-adsorbates resulted in a significant increase in efficiency and Jsc, and they show promise as a treatment for TCPP DSSCs.
|
57 |
Simulations of dye-sensitized solar cellsMaluta, Eric N. January 2010 (has links)
No description available.
|
58 |
Probing the free electron density and diffusion length in dye-sensitized solar cellsDunn, Halina K. January 2009 (has links)
No description available.
|
59 |
New functional molecules and polymers for organic light-emitting diodes and solar cellsWang, Qiwei 01 January 2010 (has links)
No description available.
|
60 |
Mesoporous titania beads for use in dye-sensitized solar cellsMallows, John January 2017 (has links)
A range of titanium dioxide (titania) samples provided by Huntsman Pigments and Additives were investigated for their suitability for use in various optoelectronic devices, specifically dye-sensitized solar cells (DSSCs). Five of the titania samples are 1-20 micrometre size spherical 3D porous beads made up of titania nanoparticles and a further six samples are porous titania nanoparticle clusters of no specific shape, all of which possess high surface areas from 85 to 276 m2g-1. The samples were compared to commercially available nanocrystalline TiO2 powders and paste. All of the samples were initially assessed for suitability in DSSC devices by investigating various properties such as crystal phase, particle size, band gap, morphology and N719 dye adsorption, both as a powder sample and as a sintered film, employing techniques such as powder x-ray diffraction, UV/Vis spectroscopy and scanning electron microscopy. Different methods of formulating the samples into pastes for application to a substrate were attempted and electrochemical properties of a selection of films were also compared. The more promising titania samples were formulated into dye-sensitized solar cells and cell efficiencies calculated. DSSC devices were also fabricated with low temperature (125oC) sintering of the titania layer to assess the suitability of the samples for use in devices with flexible substrates. Initial devices incorporating the Huntsman TiO2 samples provided low efficiencies (< 0.1%). The samples were then modified with pre-sintering treatment prior to paste formulation to optimize crystallinity, particle size, porosity and surface area. The modified titania bead samples showed great promise in low temperature sintered devices, providing device efficiencies of 2.8%, more than double that of those incorporating the standard P25 TiO2 (1.3%). After sample modification a superior solar cell performance (3.2%) was also observed in 510oC sintered devices when compared to the standard P25 TiO2 devices (2.9%), with higher photocurrent and open circuit voltage than devices fabricated from commercially optimized TiO2 paste. Devices were also fabricated using pre-sensitized titania in an attempt to reduce device manufacturing time. The modified samples again showed good performance, providing working devices with efficiencies comparable to the equivalent pre-sensitized P25 devices.
|
Page generated in 0.0859 seconds