1 |
Multimodal Learning CompanionsYun, Hae Seon 20 December 2024 (has links)
Technologien wie Sensoren können dabei helfen, die Fortschritte und Zustände der Lernenden (z.B. Langeweile, Verhaltensweisen des Aufgebens) zu verstehen, und diese erkannten Zustände können genutzt werden, um ein Unterstützungssystem zu entwickeln, das als Begleiter fungiert. Zu diesem Zweck werden in dieser Dissertation drei Forschungsfragen untersucht: 1) Wie können multimodale Sensordaten wie physiologische und eingebettete Sensordaten genutzt werden, um Lernbegleiter zu entwickeln, die den Lernenden ein Bewusstsein für ihre Zustände vermitteln? als erste Forschungsfrage, 2) Wie können Lernbegleiter auf verschiedenen Modalitätsschnittstellen entworfen werden, wie z.B. bildschirmbasierte Agenten und verkörperte Roboter?, um verschiedene Möglichkeiten zu untersuchen, wie Lernende effektiv beraten werden können, und 3) Wie können nicht-technische Nutzer bei der Gestaltung und Nutzung multimodaler Lernbegleiter für ihre Anwendungen unterstützt werden? Zur Beantwortung der obengenannten Forschungsfragen wurde als Methode der Design-Based Research (DBR) Ansatz gewählt, bei der Theorie und Praxis gleichermaßen berücksichtigt wurden. Die daraus abgeleiteten Designüberlegungen dienten als Leitfaden für die Gestaltung von Lernbegleitern und der Plattform zur Entwicklung multimodaler Lernbegleiter. / This dissertation investigates three research questions: 1) How can multimodal sensor data such as physiological and embedded sensor data be used to design learning companions to provide learners with an awareness of their states?, 2) How can learning companions be designed for different modality interfaces, such as screen-based agents and embodied robots? to investigate various means to provide effective advice to learners, and 3) How can non-technical users be supported in designing and using multimodal learning companions in their various use cases? To answer these research questions, design-based research (DBR) methodology was utilized, considering both theory and practice. The derived design considerations were employed to guide the design of the learning companions as well as the platform to design multimodal learning companions. The findings from this dissertation reveal an association between the change in physiological sensor values and the arousal of emotion, which is also endorsed by prior studies. It was also found that using sensor devices such as mobile and wearable devices and Facial Expression Recognition (FER) can add to the methods of detecting learners’ states. Furthermore, designing a learning companion requires a consideration of the different modalities of the involved technology, in addition to the appropriate design of application scenarios. It is also necessary to integrate the stakeholders (e.g. teachers) into the design process while also considering the data privacy of the target users (e.g. students). The dissertation employs DBR to investigate real-life educational issues, considering both theories and practical constraints. Even though the studies conducted are limited, as they involved only small sample sizes lacking in generalizability, some authentic educational needs were derived, and the corresponding solutions were devised and tested in this dissertation.
|
Page generated in 0.0761 seconds