• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1032
  • 446
  • 232
  • 207
  • 101
  • 37
  • 23
  • 23
  • 12
  • 11
  • 10
  • 8
  • 6
  • 5
  • 5
  • Tagged with
  • 2693
  • 488
  • 369
  • 349
  • 255
  • 236
  • 223
  • 192
  • 191
  • 176
  • 175
  • 172
  • 164
  • 153
  • 150
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

A Real-Time Monitoring of Fluids Properties in Tubular Architectures

Nour, Maha A. 10 1900 (has links)
Real-time monitoring of fluid properties in tubular systems, such as viscosity, flow rate, and pressure, is essential for industries utilizing the liquid medium. Today such fluid characteristics are studied off-line using laboratory facilities that can provide accurate results. Nonetheless, it is inadequate to match the pace demanded by the industries. Therefore, off-line measurements are slow and ineffective. On the other hand, commercially available real-time monitoring sensors for fluid properties are generally large and bulky, generating considerable pressure reduction and energy loss in tubular systems. Furthermore, they produce significant and persistent damage to the tubular systems during the installation process because of their bulkiness. To address these challenges, industries have realigned their attention on non-destructive testing and noninvasive methodologies installed on the outer tubular surface to avoid flow disturbance and shutting systems for installations. Although, such monitoring sensors showed greater performance in monitoring and inspecting pipe health conditions, they are not effective for monitoring the properties of the fluids. It is limited to flowmeter applications and does not include fluid characteristics such as viscometers. Therefore, developing a convenient real-time integrated sensory system for monitoring different fluid properties in a tubular system is critical. In this dissertation, a fully compliant compact sensory system is designed, developed, examined and optimized for monitoring fluid properties in tubular architectures. The proposed sensor system consists of a physically flexible platform connected to the inner surface of tubes to adopt the different diameters and curvature shapes with unnoticeable flow disruption. Also, it utilizes the microchannel bridge to serve in the macro application inside pipe systems. It has an array of pressure sensors located bellow the microchannel as the primary measurement unit for the device. The dissertation is supported by simulation and modeling for a deeper understanding of the system behavior. In the last stage, the sensory module is integrated with electronics for a fully compliant stand-alone system.
292

Data-driven Tactile Sensing using Spatially Overlapping Signals

Piacenza, Pedro January 2020 (has links)
Providing robots with distributed, robust and accurate tactile feedback is a fundamental problem in robotics because of the large number of tasks that require physical interaction with objects. Tactile sensors can provide robots with information about the location of each point of contact with the manipulated object, an estimation of the contact forces applied (normal and shear) and even slip detection. Despite significant advances in touch and force transduction, tactile sensing is still far from ubiquitous in robotic manipulation. Existing methods for building touch sensors have proven difficult to integrate into robot fingers due to multiple challenges, including difficulty in covering multicurved surfaces, high wire count, or packaging constrains preventing their use in dexterous hands. In this dissertation, we focus on the development of soft tactile systems that can be deployed over complex, three-dimensional surfaces with a low wire count and using easily accessible manufacturing methods. To this effect, we present a general methodology called spatially overlapping signals. The key idea behind our method is to embed multiple sensing terminals in a volume of soft material which can be deployed over arbitrary, non-developable surfaces. Unlike a traditional taxel, these sensing terminals are not capable of measuring strain on their own. Instead, we take measurements across pairs of sensing terminals. Applying strain in the receptive field of this terminal pair should measurably affect the signal associated with it. As we embed multiple sensing terminals in this soft material, a significant overlap of these receptive fields occurs across the whole active sensing area, providing us with a very rich dataset characterizing the contact event. The use of an all-pairs approach, where all possible combinations of sensing terminals pairs are used, maximizes the number of signals extracted while reducing the total number of wires for the overall sensor, which in turn facilitates its integration. Building an analytical model for how this rich signal set relates to various contacts events can be very challenging. Further, any such model would depend on knowing the exact locations of the terminals in the sensor, thus requiring very precise manufacturing. Instead, we build forward models of our sensors from data. We collect training data using a dataset of controlled indentations of known characteristics, directly learning the mapping between our signals and the variables characterizing a contact event. This approach allows for accessible, cheap manufacturing while enabling extensive coverage of curved surfaces. The concept of spatially overlapping signals can be realized using various transduction methods; we demonstrate sensors using piezoresistance, pressure transducers and optics. With piezoresistivity we measure resistance values across various electrodes embedded in a carbon nanotubes infused elastomer to determine the location of touch. Using commercially available pressure transducers embedded in various configurations inside a soft volume of rubber, we show its possible to localize contacts across a curved surface. Finally, using optics, we measure light transport between LEDs and photodiodes inside a clear elastomer which makes up our sensor. Our optical sensors are able to detect both the location and depth of an indentation very accurately on both planar and multicurved surfaces. Our Distributed Interleaved Signals for Contact via Optics or D.I.S.C.O Finger is the culmination of this methodology: a fully integrated, sensorized robot finger, with a low wire count and designed for easy integration into dexterous manipulators. Our DISCO Finger can generally determine contact location with sub-millimeter accuracy, and contact force to within 10% (and often with 5%) of the true value without the need for analytical models. While our data-driven method requires training data representative of the final operational conditions that the system will encounter, we show our finger can be robust to novel contact scenarios where the shape of the indenter has not been seen during training. Moreover, the forward model that predicts contact locations and applied normal force can be transfered to new fingers with minimal loss of performance, eliminating the need to collect training data for each individual finger. We believe that rich tactile information, in a highly functional form with limited blind spots and a simple integration path into complete systems, like we demonstrate in this dissertation, will prove to be an important enabler for data-driven complex robotic motor skills, such as dexterous manipulation.
293

Lorica: Low cost upper body protective gear that measures hit weight and placement

Angelov, Stefan January 2018 (has links)
Målet med detta projekt var att utveckla en prototyp som kan användas för att mäta vikten av ett Taekwondo slag samt dess lokalisering. Dess syfte är att användas i sparring- och träningssyften som ett hjälpmedel för utövare av kampsporter, mest inom Taekwondo. Prototypen var utvecklad med hjälp av handgjorda textiler som sätts i tre separata kuddar som omringar en Taekwondo kampväst som vanligtvis bärs under träning och på tävlingar. Sensorerna i kudden är placerade jämnt för att öka sannolikheten att sparken upptäcks. Detta då det inte finns någon skillnad på hur poäng tilldelas beroende på var man träffar med sparken på överkroppen.Den färdiga prototypen har förmågan att mäta slagvikten upp till 13 kilogram och fastställa var slaget inträffade baserat på vilken av de tre kuddarna det var som blev träffad. / The goal of this project was to develop a low-cost prototype that could be used to measure the location and weight of a Taekwondo kick. Its purpose being to be used in sparring and training sessions as a helping tool for martial arts practitioners, mainly in Taekwondo. It was constructed using handmade e-textile sensors that were fitted into three matrix pads surrounding an upper body protective gear commonly worn in Taekwondo sparring sessions and competitions. As there is no difference in point awarding based on where the kick is placed in the upper body region, the sensors in the matrix pad are evenly spread to cover more ground and increase impact location detection probability.The finished prototype has the ability to measure impact weight up to 13 kilograms and determine impact location successfully based on which of the three matrix pads was hit.
294

Plasmonic Devices for Near and Far-Field Applications

Alrasheed, Salma 30 November 2017 (has links)
Plasmonics is an important branch of nanophotonics and is the study of the interaction of electromagnetic fields with the free electrons in a metal at metallic/dielectric interfaces or in small metallic nanostructures. The electric component of an exciting electromagnetic field can induce collective electron oscillations known as surface plasmons. Such oscillations lead to the localization of the fields that can be at sub-wavelength scale and to its significant enhancement relative to the excitation fields. These two characteristics of localization and enhancement are the main components that allow for the guiding and manipulation of light beyond the diffraction limit. This thesis focuses on developing plasmonic devices for near and far-field applications. In the first part of the thesis, we demonstrate the detection of single point mutation in peptides from multicomponent mixtures for early breast cancer detection using selfsimilar chain (SCC) plasmonic devices that show high field enhancement and localization. In the second part of this work, we investigate the anomalous reflection of light for TM polarization for normal and oblique incidence in the visible regime. We propose gradient phase gap surface plasmon (GSP) metasurfaces that exhibit high conversion efficiency (up to ∼97% of total reflected light) to the anomalous reflection angle for blue, green and red wavelengths at normal and oblique incidence. In the third part of the thesis, we present a theoretical approach to narrow the plasmon linewidth and enhance the near-field intensity at a plasmonic dimer gap (hot spot) through coupling the electric localized surface plasmon (LSP) resonance of a silver hemispherical dimer with the resonant modes of a Fabry-Perot (FP) cavity. In the fourth part of this work, we demonstrate numerically bright color pixels that are highly polarized and broadly tuned using periodic arrays of metal nanosphere dimers on a glass substrate. In the fifth and final part of the thesis, we propose numerically an approach to narrow the plasmon linewidth and enhance the magnetic near field intensity at a magnetic hot spot in a hybridized metal-insulator-metal (MIM) structure. The computational method used throughout the thesis is the finite-difference time-domain method (FDTD).
295

3D Interdigitated Electrode Array (IDEA) Biosensor For Detection Of Serum Biomarker

Bhura, Dheeraj Kumar 01 January 2011 (has links)
Miniaturization, integration and intelligence are the developing trends for sensor,especially for biosensors. The development of microelectronics technology is a powerful engine to full this objective. It is well known that the microelectronic fabrication process in proven technology for fabrication of integrated circuits. Advances in the field of micro-electronics and micro-mechanical devices combined with medical science have led to the development of numerous analytical devices in monitoring of a wide range of analytes. The unique properties of nanoscale materials offer excellent prospects for interfacing biological recognition events with electronic signal transduction and for designing a new generation of bio-electronic devices exhibiting novel functions. Biosensor development has the potential to meet the need for rapid, sensitive, and specic detection of pathogenic bacteria from natural sources. This work focuses on development of one such electrochemical biosensor platform and discusses dierent aspects related to the design of biosensor and biodetection systems. A new transducer for bio sensor applications based on 3-dimensional, comb structured interdigitated electrode arrays was chosen mainly for two reasons. Firstly, this geometry allows the monitoring of both resistivity and dielectric constant of solution, thus making interdigitated electrodes more versatile tools than other kind of transducers. Second, they present short electric eld penetration depths, which make them more sensitive to changes occurring close to their surface (20 - 100 nm above the surface). This fact enables the monitoring of local changes in the vicinity of interest. Binding of analyte molecules to the chemically modied transducer surface induces important changes in the conductivity between the electrodes. Interdigitated electrodes have been employed to detect the presence of Anti-Transglutaminase (TG) antibodies, that are established biomarkers for Celiac disease which is due to gluten allergy. The biosensor was optimized for specific and sensitive detection of this biomarker. The sensor showed a sensitivity down to picomolar(pM) concentration of the biomarker. Gold nanoparticles were further used for signal enhancement so as to bring the sensor performance closer to Enzyme linked immunosorbant assay (ELISA).
296

Development of Chemiresistor Based Nanosensors to Detect Volatile Cancer Biomarkers

Vij, Shitiz 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Researchers have shown links between various hydrocarbons and carbonyl compounds and diseases, such as cancer using exhaled breath analysis through gas chromatography/mass spectroscopy (GC/MS) analysis of volatile organic compounds (VOCs). Trained canines can detect these VOCs and can differentiate a patient suffering from cancer from a healthy control patient. In this project, an attempt has been made to develop highly sensitive sensors for the detection of low concentrations of aldehyde VOCs, such as nonanal, using conductive polymer composites (CPCs) and functionalized gold nanoparticles (f-GNPs). Facile methods have been used to enhance the sensitivity and cross-selectivity of the fabricated sensors towards nonanal. Interdigitated electrodes (IDEs) are fabricated through a photolithography process. Sensors of PEI/carbon black (CB) composite were developed via spin-coating of the material followed by the heat treatment process. Sensors of 1-Mercapto-(triethylene glycol) methyl ether functionalized GNPs are developed via drop-casting of nanomaterial and f-GNP/PEI sensors are fabricated by spin casting PEI film on top of f-GNPs. Fourier Transform Infrared (FTIR) analysis, X-Ray Diffraction (XRD) analysis, contact angle measurement, and Field Emission Scanning Electron Microscopy (FESEM) analysis was conducted to characterize the fabricated devices. The fabricated sensors have been tested with a low concentration of nonanal, nonanone, dodecane, and 1-octanol in dry air. Multiple sensors are fabricated to ensure sensors reproducibility. The sensors have been exposed repeatedly to the targeting VOC toxiv assess the repeatability of the sensors. PEI/CB sensor degradation was studied over a period of 36 days. The fabricated PEI/CB film could detect (1-80 ppm) of nonanal with higher selectivity, than the f-GNPs. The sensor0s sensitivity to nonanal was over fourteen times higher than 2-nonanone, 1-octanol, and dodecane. This shows the high selectivity of the fabricated sensor toward nonanal. In addition, the proposed sensor maintained its sensitivity to nonanal over time showing minimal degradation. The sensor response to nonanal at a relative humidity (RH) of 50% and 85% dropped less than 13% and 32% respectively. The Response of f-GNP sensors to nonanal (400 ppb - 15 ppm), dodecane (5 - 15 ppm), 1-octanol (5 - 15 ppm), and 2-nonanone (5 - 15 ppm) presented a sensitivity (∆R=R0) of 0.217%, 0.08%, 0.192% and 0.182% per ppm of the VOCs respectively. Despite the high sensitivity to the targeting VOCs, the fabricated sensors were damaged in an environment with relative humidity (RH) at 45%. A thin layer of PEI over the film was developed to ensure the sensor could tolerate longtime exposure to water vapor in an environment with RH up to 85% and enhance the sensor selectivity towards nonanal. The f-GNP/PEI sensors with nonanal (400 ppb- 15 ppm), dodecane (100 -200 ppm), 1-octanol (5 - 15 ppm) and 2-nonanone (5 - 15 ppm) presented sensitivity (∆R=R0) of 0.21%, 0.017%, 0.0438% and 0.0035% per ppm of the VOCs respectively. / 2021-04-24
297

Calibration and Evaluation of Low-Cost Optical Dust Sensors and Monitors

Zervaki, Orthodoxia January 2018 (has links)
No description available.
298

Fiber Loop Ringdown Evanescent Field Sensors

Herath, Chamini Saumya 10 December 2010 (has links)
We combine the evanescent field (EF) sensing mechanism with the fiber loop ringdown (FLRD) sensing scheme to create FLRD-EF sensors. The EF sensor heads are fabricated by etching the cladding of a single-mode fiber (SMF), while monitoring the etching process by the FLRD technique in real-time, on-line with high control precision. The effect of the sensor head dimensions on the sensors' detection sensitivity and response time are investigated. The EF scattering (EFS) sensing mechanism is combined with the FLRD detection scheme to create a new type of fiber optic index sensor. The detection limit for an optical index change is 3.2×10-5. This is the highest sensitivity for a fiber optic index sensor so far, without using any chemical-coating or optical components at the sensor head. A new type of index-based biosensor using high sensitivity FLRDEFS technique to sense deoxyribonucleic acid (DNA) and bacteria (Escherichia coli) is created.
299

Self-assembled monolayers : characterization and application to microcantilever sensors

Seivewright, Brian. January 2007 (has links)
No description available.
300

Low-Power Edge-Enabled Sensor Platforms

De Oliveira Filho, José Ilton 10 August 2023 (has links)
On-site sensing systems provide fast and timely information about a myriad of applications ranging from chemical and biological to physical phenomena in the environment or the human body. Such systems are embedded in our daily life for detecting pollutants, monitoring health, and diagnosing diseases. Especially in the field of health care, the development of portable and affordable diagnosing systems, also known as point-of-care (PoC) devices, is a major challenge. Moreover, to this day, systems for therapeutic drug monitoring (TDM) have remained bulky and highly expensive, mostly due to the need for exceptionally precise, rapid, and highly accurate real-time on-site measurements. This dissertation focuses on the design, development, and implementation of miniaturized PoC devices for achieving high sensitivity, selectivity, and reliability through a combination of hardware and software strategies at the edge. The first part of the dissertation introduces the design of single and multi-channel electrochemical readout platforms with a high voltage range, fast scan rates, and with nano-ampere resolution, covering a broad range of electrochemical excitation techniques. These platforms were paired with electrochemical-based sensors to detect SARS‑CoV‑2, bisphenol A, and ascorbic acid. The low power feature of the proposed platforms is demonstrated by powering the complete detection system with energy harvested from natural and artificial ambient light. The second part of the dissertation introduces the design and development of a miniaturized wearable device with a pico-ampere resolution, high-speed electrochemical frequency interface, and highly stable sensing circuitry. A complete in-vivo system is demonstrated for long-term (>4 hours) measurement, wherein molecules are detected and monitored directly from a probe inserted in the subcutaneous abdomen region of a Sprague-Dawley rat. A solution for sensor drift due to biofouling and interference is demonstrated thought to the integration with real-time processing software. Furthermore, integrating the aforementioned platforms with highly reduced dense neural network models is demonstrated to increase the robustness of the sensors, allowing the detection of contaminants in complex samples, improving the sensor selectivity, and providing timely diagnoses in-situ.

Page generated in 0.0325 seconds