• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 5
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 29
  • 18
  • 11
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Feature extraction and similarity-based analysis for proteome and genome databases

Öztürk, Özgür. January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 108-119).
12

Data Mining On Architecture Simulation

Maden, Engin 01 March 2010 (has links) (PDF)
Data mining is the process of extracting patterns from huge data. One of the branches in data mining is mining sequence data and here the data can be viewed as a sequence of events and each event has an associated time of occurrence. Sequence data is modelled using episodes and events are included in episodes. The aim of this thesis work is analysing architecture simulation output data by applying episode mining techniques, showing the previously known relationships between the events in architecture and providing an environment to predict the performance of a program in an architecture before executing the codes. One of the most important points here is the application area of episode mining techniques. Architecture simulation data is a new domain to apply these techniques and by using the results of these techniques making predictions about the performance of programs in an architecture before execution can be considered as a new approach. For this purpose, by implementing three episode mining techniques which are WINEPI approach, non-overlapping occurrence based approach and MINEPI approach a data mining tool has been developed. This tool has three main components. These are data pre-processor, episode miner and output analyser.
13

Using Differential Sequence Mining to Associate Patterns of Interactions in Concept Mapping Activity with Dimensions of Collaborative Process

January 2015 (has links)
abstract: Computer supported collaborative learning (CSCL) has made great inroads in classroom teaching marked by the use of tools and technologies to support and enhance collaborative learning. Computer mediated learning environments produce large amounts of data, capturing student interactions, which can be used to analyze students’ learning behaviors (Martinez-Maldonado et al., 2013a). The analysis of the process of collaboration is an active area of research in CSCL. Contributing towards this area, Meier et al. (2007) defined nine dimensions and gave a rating scheme to assess the quality of collaboration. This thesis aims to extract and examine frequent patterns of students’ interactions that characterize strong and weak groups across the above dimensions. To achieve this, an exploratory data mining technique, differential sequence mining, was employed using data from a collaborative concept mapping activity where collaboration amongst students was facilitated by an interactive tabletop. The results associate frequent patterns of collaborative concept mapping process with some of the dimensions assessing the quality of collaboration. The analysis of associating these patterns with the dimensions of collaboration is theoretically grounded, considering aspects of collaborative learning, concept mapping, communication, group cognition and information processing. The results are preliminary but still demonstrate the potential of associating frequent patterns of interactions with strong and weak groups across specific dimensions of collaboration, which is relevant for students, teachers, and researchers to monitor the process of collaborative learning. The frequent patterns for strong groups reflected conformance to the process of conversation for dimensions related to “communication” aspect of collaboration. In terms of the concept mapping sub-processes the frequent patterns for strong groups reflect the presentation phase of conversation with processes like talking, sharing individual maps while constructing the groups concept map followed by short utterances which represents the acceptance phase. For “joint information processing” aspect of collaboration, the frequent patterns for strong groups were marked by learners’ contributing more upon each other’s work. In terms of the concept mapping sub-processes the frequent patterns were marked by learners adding links to each other’s concepts or working with each other’s concepts, while revising the group concept map. / Dissertation/Thesis / Masters Thesis Computer Science 2015
14

Sequential Pattern Mining on Electronic Medical Records for Finding Optimal Clinical Pathways

Edman, Henrik January 2018 (has links)
Electronic Medical Records (EMRs) are digital versions of paper charts, used to record the treatment of different patients in hospitals. Clinical pathways are used as guidelines for how to treat different diseases, determined by observing outcomes from previous treatments. Sequential pattern mining is a version of data mining where the data mined is organized in sequences. It is a common research topic in data mining with many new variations on existing algorithms being introduced frequently. In a previous report, the sequential pattern mining algorithm PrefixSpan was used to mine patterns in EMRs to verify or suggest new clinical pathways. It was found to only be able to verify pathways partially. One of the reasons stated for this was that PrefixSpan was too inefficient to be able to mine at a low enough support to consider some items. In this report CSpan is used instead, since it is supposed to outperform PrefixSpan by up to two orders of magnitude, in order to improve runtime and thereby address the problems mentioned in the previous work. The results show that CSpan did indeed improve the runtime and the algorithm was able to mine at a lower minimum support. However, the output was only barely improved. / Electronic Medical Records (EMRs) är digitala versioner av behandlingshistoriken för patienter på sjukhus. Clinical pathways används som riktlinjer för hur olika sjukdomar borde behandlas, vilka bestäms genom att observera utkomsten av tidigare behandlingar. Sequential pattern mining är en typ av data mining där datan som behandlas är strukturerad i sekvenser. Det är ett vanligt forskningsområde inom data mining där många nya variationer av existerande algoritmer introduceras frekvent. I en tidigare rapport användes sequential pattern mining algoritmen PrefixSpan på EMRs för att verifiera eller föreslå nya clinical pathways. Den kunde dock endast verifiera pathways delvis. En av anledningarna som nämndes för detta var att PrefixSpan var för ineffektiv för att kunna köras med en tillräckligt låg support för att kunna finna vissa åtgärder i en behandling. I den här rapporten används istället CSpan, eftersom den ska överprestera PrefixSpan med upp till två storleksordningar, för att förbättra körningstiden och därmed adressera problemen som nämns i den tidigare rapporten. Resultaten visar att CSpan förbättrade körningstiden och algoritmen kunde köras med lägre support. Däremot blev utdatan knappt förbättrad.
15

Migration Motif: A Spatial-Temporal Pattern Mining Approach for Financial Markets

Du, Xiaoxi 08 April 2009 (has links)
No description available.
16

Sequential Pattern Mining: A Proposed Approach for Intrusion Detection Systems

Lefoane, Moemedi, Ghafir, Ibrahim, Kabir, Sohag, Awan, Irfan U. 19 December 2023 (has links)
No / Technological advancements have played a pivotal role in the rapid proliferation of the fourth industrial revolution (4IR) through the deployment of Internet of Things (IoT) devices in large numbers. COVID-19 caused serious disruptions across many industries with lockdowns and travel restrictions imposed across the globe. As a result, conducting business as usual became increasingly untenable, necessitating the adoption of new approaches in the workplace. For instance, virtual doctor consultations, remote learning, and virtual private network (VPN) connections for employees working from home became more prevalent. This paradigm shift has brought about positive benefits, however, it has also increased the attack vectors and surfaces, creating lucrative opportunities for cyberattacks. Consequently, more sophisticated attacks have emerged, including the Distributed Denial of Service (DDoS) and Ransomware attacks, which pose a serious threat to businesses and organisations worldwide. This paper proposes a system for detecting malicious activities in network traffic using sequential pattern mining (SPM) techniques. The proposed approach utilises SPM as an unsupervised learning technique to extract intrinsic communication patterns from network traffic, enabling the discovery of rules for detecting malicious activities and generating security alerts accordingly. By leveraging this approach, businesses and organisations can enhance the security of their networks, detect malicious activities including emerging ones, and thus respond proactively to potential threats.
17

SNIF TOOL - Sniffing for Patterns in Continuous Streams

MUKHERJI, ABHISHEK 11 February 2008 (has links)
Recent technological advances in sensor networks and mobile devices give rise to new challenges in processing of live streams. In particular, time-series sequence matching, namely, the similarity matching of live streams against a set of predefined pattern sequence queries, is an important technology for a broad range of domains that include monitoring the spread of hazardous waste and administering network traffic. In this thesis, I use the time critical application of monitoring of fire growth in an intelligent building as my motivating example. Various measures and algorithms have been established in the current literature for similarity of static time-series data. Matching continuous data poses the following new challenges: 1) fluctuations in stream characteristics, 2) real-time requirements of the application, 3) limited system resources, and, 4) noisy data. Thus the matching techniques proposed for static time-series are mostly not applicable for live stream matching. In this thesis, I propose a new generic framework, henceforth referred to as the n-Snippet Indices Framework (in short, SNIF), for discovering the similarity between a live stream and pattern sequences. The framework is composed of two key phases: (1.) Off-line preprocessing phase: where the pattern sequences are processed offline and stored into an approximate 2-level index structure; and (2.) On-line live stream matching phase: streaming time-series (or the live stream) is on-the-fly matched against the indexed pattern sequences. I introduce the concept of n-Snippets for numeric data as the unit for matching. The insight is to match small snippets of the live stream against prefixes of the patterns and maintain them in succession. Longer the pattern prefixes identified to be similar to the live stream, better the confirmation of the match. Thus, the live stream matching is performed in two levels of matching: bag matching for matching snippets and order checking for maintaining the lengths of the match. I propose four variations of matching algorithms that allow the user the capability to choose between the two conflicting characteristics of result accuracy versus response time. The effectiveness of SNIF to detect patterns has been thoroughly tested through extensive experimental evaluations using the continuous query engine CAPE as platform. The evaluations made use of real datasets from multiple domains, including fire monitoring, chlorine monitoring and sensor networks. Moreover, SNIF is demonstrated to be tolerant to noisy datasets.
18

Une approche de fouille de données pour le débogage temporel des applications embarquées de streaming / Data Mining Approach to Temporal Debugging of Embedded Streaming Applications

Iegorov, Oleg 08 April 2016 (has links)
Le déboggage des applications de streaming qui s'exécutent sur les systèmes embarqués multimédia est l'un des domaines les plus exigeants dans le développement de logiciel embarqué. Les nouvelles générations de materiel embarqué introduisent de nouvelles systèmes sur une puce, qui fait que les développeurs du logiciel doivent adapter leurs logiciels aux nouvelles platformes. Le logiciel embarqué doit non seulement fournir des résultats corrects mais aussi le faire en temps réel afin de respecter les propriétés de qualité de service (Quality-of-Service, QoS) du système. Lorsque les propriétés QoS ne sont pas respectées, des bugs temporels font leur apparition. Ces bugs se manifestent comme, par exemple, des glitches dans le flux vidéo ou des craquements dans le flux audio. Le déboggage temporel est en général difficile à effectuer car les bugs temporels n'ont pas souvent de rapport avec l'exactitude fonctionnelle du code des applications, ce qui rend les outils de débogage traditionels, comme GDB, peu utiles. Le non-respect des propriétés QoS peut provenir des interactions entre les applications, ou entre les applications et les processus systèmes. Par conséquent, le contexte d'exécution entier doit être pris en compte pour le déboggage temporel. Les avancements récents en collecte des traces d'exécution permettent aux développeurs de recueillir des traces et de les analyser après la fin d'exécution pour comprendre quelle activité système est responsable des bugs temporels. Cependant, les traces d'exécution ont une taille conséquente, ce qui demande aux devéloppeurs des connaissainces en analyse de données qu'ils n’ont souvent pas.Dans cette thèse, nous proposons SATM - une approche novatrice pour le déboggage temporel des applications de streaming. SATM repose sur la prémisse que les applications sont conçues avec le modèle dataflow, i.e. peuvent être représentées comme un graphe orienté où les données sont transmises entre des unités de calcul (fontions, modules, etc.) appelées "acteurs". Les acteurs doivent être exécutés de manière périodique afin de respecter les propriétés QoS représentées par les contraintes de temps-réél. Nous montrons qu'un acteur qui ne respecte pas de façon répétée sa période pendant l'exécution de l'application cause la violation des contraintes temps-reel de l'application. En pratique, SATM est un workflow d'analyse de données venant des traces d'exécution qui combine des mesures statistiques avec des algorithmes de fouille de données. SATM fournit une méthode automatique du débogage temporel des applications de streaming. Notre approche prend en entrée une trace d'exécution d'une application ayant une QoS basse ainsi qu'une liste de ses acteurs, et tout d'abord détecte des invocations des acteurs dans la trace. SATM découvre ensuite les périodes des acteurs ainsi que les séctions de la trace où la période n'a pas été respectée. Enfin, ces séctions sont analysées afin d'extraire des motifs de l'activité système qui différencient ces sections des autres séctions de la trace. De tels motifs peuvent donner des indices sur l'origine du problème temporel dans le systeme et sont rendus au devéloppeur. Plus précisément, nous représentons ces motifs comme des séquences contrastes minimales et nous étudions des différentes solutions pour fouiller ce type de motifs à partir des traces d'exécution.Enfin, nous montrons la capacité de SATM de détecter une perturbation temporelle injectée artificiellement dans un framework multimedia GStreamer, ainsi que des bugs temporels dans deux cas d'utilisation des applications de streaming industrielles provenant de la société STMicroelectronics. Nous fournissons également une analyse détaillée des algorithmes de fouille de motifs séquentiels appliqués sur les données venant des traces d'exécution, et nous expliquons pour quelle est la raison les algorithmes de pointe n'arrivent pas à fouiller les motifs séquentiels à partir des traces d'exécution de façon efficace. / Debugging streaming applications run on multimedia embedded systems found in modern consumer electronics (e.g. in set-top boxes, smartphones, etc) is one of the most challenging areas of embedded software development. With each generation of hardware, more powerful and complex Systems-on-Chip (SoC) are released, and developers constantly strive to adapt their applications to these new platforms. Embedded software must not only return correct results but also deliver these results on time in order to respect the Quality-of-Service (QoS) properties of the entire system. The non-respect of QoS properties lead to the appearance of temporal bugs which manifest themselves in multimedia embedded systems as, for example, glitches in the video or cracks in the sound. Temporal debugging proves to be tricky as temporal bugs are not related to the functional correctness of the code, thus making traditional GDB-like debuggers essentially useless. Violations of QoS properties can stem from complex interactions between a particular application and the system or other applications; the complete execution context must be, therefore, taken into account in order to perform temporal debugging. Recent advances in tracing technology allow software developers to capture a trace of the system's execution and to analyze it afterwards to understand which particular system activity is responsible for the violations of QoS properties. However, such traces have a large volume, and understanding them requires data analysis skills that are currently out of the scope of the developers' education.In this thesis, we propose SATM (Streaming Application Trace Miner) - a novel temporal debugging approach for embedded streaming applications. SATM is based on the premise that such applications are designed under the dataflow model of computation, i.e. as a directed graph where data flows between computational units called actors. In such setting, actors must be scheduled in a periodic way in order to meet QoS properties expressed as real-time constraints, e.g. displaying 30 video frames per second. We show that an actor which does not eventually respect its period at runtime causes the violation of the application’s real-time constraints. In practice, SATM is a data analysis workflow combining statistical measures and data mining algorithms. It provides an automatic solution to the problem of temporal debugging of streaming applications. Given an execution trace of a streaming application exhibiting low QoS as well as a list of its actors, SATM firstly determines exact actors’ invocations found in the trace. It then discovers the actors’ periods, as well as parts of the trace in which the periods are not respected. Those parts are further analyzed to extract patterns of system activity that differentiate them from other parts of the trace. Such patterns can give strong hints on the origin of the problem and are returned to the developer. More specifically, we represent those patterns as minimal contrast sequences and investigate various solutions to mine such sequences from execution trace data.Finally, we demonstrate SATM’s ability to detect both an artificial perturbation injected in an open source multimedia framework, as well as temporal bugs from two industrial use cases coming from STMicroelectronics. We also provide an extensive analysis of sequential pattern mining algorithms applied on execution trace data and explain why state-of-the-art algorithms fail to efficiently mine sequential patterns from real-world traces.
19

A New Wap-tree Based Sequential Pattern Mining Algorithm For Faster Pattern Extraction

Onal, Kezban Dilek 01 September 2012 (has links) (PDF)
Sequential pattern mining constitutes a basis for solution of problems in various domains like bio-informatics and web usage mining. Research on this field continues seeking faster algorithms. WAP-Tree based algorithms that emerged from web usage mining literature have shown a remarkable performance on single-item sequence databases. In this study, we investigated application of WAP-Tree based mining to multi-item sequential pattern mining and we designed an extension of WAP-Tree data structure for multi-item sequence databases, the MULTI-WAP-Tree. In addition, we propose a new mining strategy on WAP-Tree which involves a hybrid traversal strategy in possible sequences search space and a new early prunning idea called Sibling Principle on Pattern Tree. Two algorithms, FOF-PT and MULTI-FOF-PT, applying this strategy on WAP-Tree and MULTI-WAP-Tree respectively, are developed. Experiments showed that FOF-PT outperforms both other WAP-Tree based algorithms and PrefixSpan in terms of execution time. Moreover, experimental results revealed MULTI-FOF-PT finds patterns faster than PrefixSpan on dense multi-item sequence databases with small alphabets.
20

Mineração de padrões sequenciais e geração de regras de associação envolvendo temporalidade

João, Rafael Stoffalette 07 May 2015 (has links)
Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-08-07T19:16:02Z No. of bitstreams: 1 DissRSJ.pdf: 7098556 bytes, checksum: 78b5b020899e1b4ef3e1fefb18d32443 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-07T19:18:39Z (GMT) No. of bitstreams: 1 DissRSJ.pdf: 7098556 bytes, checksum: 78b5b020899e1b4ef3e1fefb18d32443 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-07T19:18:50Z (GMT) No. of bitstreams: 1 DissRSJ.pdf: 7098556 bytes, checksum: 78b5b020899e1b4ef3e1fefb18d32443 (MD5) / Made available in DSpace on 2017-08-07T19:28:30Z (GMT). No. of bitstreams: 1 DissRSJ.pdf: 7098556 bytes, checksum: 78b5b020899e1b4ef3e1fefb18d32443 (MD5) Previous issue date: 2015-05-07 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Data mining aims at extracting useful information from a Database (DB). The mining process enables, also, to analyze the data (e.g. correlations, predictions, chronological relationships, etc.). The work described in this document proposes an approach to deal with temporal knowledge extraction from a DB and describes the implementation of this approach, as the computational system called S_MEMIS+AR. The system focuses on the process of finding frequent temporal patterns in a DB and generating temporal association rules, based on the elements contained in the frequent patterns identified. At the end of the process performs an analysis of the temporal relationships between time intervals associated with the elements contained in each pattern using the binary relationships described by the Allen´s Interval Algebra. Both, the S_MEMISP+AR and the algorithm that the system implements, were subsidized by the Apriori, the MEMISP and the ARMADA approaches. Three experiments considering two different approaches were conducted with the S_MEMISP+AR, using a DB of sale records of products available in a supermarket. Such experiments were conducted to show that each proposed approach, besides inferring new knowledge about the data domain and corroborating results that reinforce the implicit knowledge about the data, also promotes, in a global way, the refinement and extension of the knowledge about the data. / A mineração de dados tem como objetivo principal a extração de informações úteis a partir de uma Base de Dados (BD). O processo de mineração viabiliza, também, a realização de análises dos dados (e.g, identificação de correlações, predições, relações cronológicas, etc.). No trabalho descrito nesta dissertação é proposta uma abordagem à extração de conhecimento temporal a partir de uma BD e detalha a implementação dessa abordagem por meio de um sistema computacional chamado S_MEMISP+AR. De maneira simplista, o sistema tem como principal tarefa realizar uma busca por padrões temporais em uma base de dados, com o objetivo de gerar regras de associação temporais entre elementos de padrões identificados. Ao final do processo, uma análise das relações temporais entre os intervalos de duração dos elementos que compõem os padrões é feita, com base nas relações binárias descritas pelo formalismo da Álgebra Intervalar de Allen. O sistema computacional S_MEMISP+AR e o algoritmo que o sistema implementa são subsidiados pelas propostas Apriori, ARMADA e MEMISP. Foram realizados três experimentos distintos, adotando duas abordagens diferentes de uso do S_MEMISP+AR, utilizando uma base de dados contendo registros de venda de produtos disponibilizados em um supermercado. Tais experimentos foram apresentados como forma de evidenciar que cada uma das abordagens, além de inferir novo conhecimento sobre o domínio de dados e corroborar resultados que reforçam o conhecimento implícito já existente sobre os dados, promovem, de maneira global, o refinamento e extensão do conhecimento sobre os dados.

Page generated in 0.0912 seconds