• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 313
  • 85
  • 68
  • 26
  • 16
  • 16
  • 16
  • 16
  • 16
  • 15
  • 13
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 591
  • 591
  • 186
  • 143
  • 138
  • 133
  • 118
  • 117
  • 114
  • 109
  • 108
  • 85
  • 85
  • 85
  • 69
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

The use of maize tassel as a solid phase extraction sorbent for the recovery of copper, gold and silver from aqueous solution.

Sekhula, Mahlatse Mapula. January 2011 (has links)
M. Tech. Environmental Management / Investigates the possibility of using maize tassel powder as a solid phase extraction sorbent for the recovery of Ag, Au and Cu from aqueous solution. The surface characteristics of maize tassel and its ability to remove Ag, Au and Cu from aqueous solutions needed to be established before the preparation of maize tassel beads.
352

Treatment of wastewater containing Melanoidin through simultaneous adsorption and biodegradation processes.

Ojijo, Vincent Omondi. January 2010 (has links)
M. Tech. Engineering : Chemical. / Evaluates the applicability of adsorption, biodegradation and hybrid adsorption and biodegradation system in treatment of wastewater containing melanoidin.Treatment of wastewater containing melanoidin through SAB process in fluidized bed bioreactor results in the best performance index as compared to adsorption and biodegradation processes undertaken singly. The synergies realized are more pronounced in fluidized bed bioreactor than in stirred tank system.
353

Decentralizing the Strategic Sewage Disposal Scheme of Hong Kong: the reasons and the potential modifications

Li, Mo-yee, Deanna., 李慕儀. January 2000 (has links)
published_or_final_version / abstract / toc / Applied Geosciences / Master / Master of Science
354

Biotreatment of domestic sewage and landfill leachate by water hyacinth (eichhornia crassipes (mart.) solms)

Wong, Wai-kin., 王偉堅. January 1997 (has links)
published_or_final_version / Botany / Master / Master of Philosophy
355

Resistance of indicator organisms to chlorination

Clinger, Robert Christopher, 1946- January 1970 (has links)
No description available.
356

Development of a quantitative method for functional gene detection in pulp and paper wastewater treatment systems

Neufeld, Josh D. January 2000 (has links)
The recent development of culture-independent methods has revolutionized the study of complex microbial communities such as those present in activated sludge treatment systems. DNA probes that hybridize to genes coding for key enzymes that catalyze microbial processes have been widely used. Can such probes be used to quantify target genes and thus quantify the potential of a microbial community to carry out a reaction of interest? / Optimal conditions for DNA extraction, probe validation, hybridization, and activity measurements were determined for the pulp and paper treatment system environment under study. Using gene probes for key denitrification genes (nirS, nirK), the correlation between denitrifiers and denitrification activity in an enrichment culture and activated sludge samples was tested. The same correlation between nitrogen fixation and nitrogen-fixing bacteria in primary clarifiers was assessed using a probe for the gene encoding a component of the nitrogenase enzyme (nifH). This work was successful in establishing the correlation between gene numbers and their corresponding enzymatic activity and thus supports the quantitative hybridization approach for the monitoring of microbial communities. (Abstract shortened by UMI.)
357

Molecular characterization of dechlorination potential in kraft pulp mill effluent treatment systems

Fortin, Nathalie. January 1996 (has links)
Many low molecular weight chlorinated organic compounds produced by the pulp and paper industry during kraft bleaching of the wood pulp are toxic. Mass balance studies suggest that mineralization of chlorinated organics is occurring in pulp and paper mill wastewater treatment systems. To understand the nature of dechlorination activity, molecular tools such as oligonucleotide primers and corresponding DNA probes were developed to monitor the presence of microorganisms possessing key genes (dehalogenases) responsible for the degradation of chloroaliphatic organics in kraft pulp mill effluent treatment systems. Oligonucleotide primers designed from the coding sequence of known dehalogenases and a methane monooxygenase gene, which is known to catalyze dehalogenation reactions, were used for polymerase chain reaction (PCR) analysis, using genomic DNA extracted from dehalogenating bacterial isolates and total community DNA extracted from water and sediments of lagoon treatment systems. PCR amplification with dhlB oligonucleotide primers, designed from the haloacid dehalogenase of Xanthobacter autotrophicus, revealed the presence of dehalogenase genes in both aerated lagoons and stabilization basins. Similar results were obtained with mmoX primers designed from the methane monooxygenase gene of Methylococcus capsulatus. DNA sequence analysis of several PCR fragments showed significant similarity to known dehalogenase genes. The molecular tools developed in this study revealed the presence of different types of microorganisms with dechlorination potential in the microbial community of pulp mill effluents.
358

Characterisation of the microbial communities present in an anaerobic baffled reactor utilising molecular techniques

Lalbahadur, Tharnija January 2005 (has links)
Thesis (M.Tech.: Biotechnology)-Dept. of Biotechnology, Durban Institute Of Technology, 2005 xxiii, 172 p. : ill. ; 30 cm / The provision of safe and sanitary water is a constitutional right and above all, a necessity of life. As a result of the rapid urbanisation and the past policies of apartheid, a large population of South Africa dwell in informal settlements, where there is very little hope of development, as the government does not possess the resources that are necessary for a full-scale sanitation programme. Therefore, on-site treatments have been considered to provide sanitation in these dense peri-urban areas. The anaerobic baffled reactor (ABR) is one such sanitation system. This reactor utilises the phenomenon of anaerobic digestion to degrade substrates. One of the major disadvantages of any anaerobic treatment processes is the extreme sensitivity of the bacterial communities, thus inducing slow recovery rates following toxic shocks. Therefore, an understanding of these microbial consortia is essential to effectively control, operate and optimise the anaerobic reactor. Fluorescence in situ hybridization, 4’,6-diamidino-2-phenylindole (DAPI) staining and DNA sequencing techniques were applied to determine the microbial consortium, as well as their reactions to daily operating conditions. With an understanding of these populations and their responses to perturbations within the system, it is possible to construct an anaerobic system that is successful in its treatment of domestic wastewater. In situ hybridizations were conducted for three operating periods, each characterised by specific flow rates. Results showed Eubacterial population dominance over the Archaeal population throughout both of the operating periods investigated. However, these cells cumulatively consisted of 50% of the total biomass fraction, as determined by DAPI staining. Group-probes utilised revealed a high concentration of fermentative acidogenic bacteria, which lead to a decrease in the pH values. It was noted that the ABR did not separate the acidogenic and methanogenic phases, as expected. Therefore, the decrease in pH further inhibited the proliferation of Archaeal acetoclastic methanogens, which were not present in the second operating period. DNA sequencing results revealed the occurrence of the hydrogenotrophic Methanobacterium and Methanococcus genera and confirmed the presence of Methanosarcina. Sequencing of the bacterial DNA confirmed the presence of the low G+ C Gram Positives (Streptococcus), the high G+C Gram Positives (Propionibacterium) and the sulfate reducing bacteria (Desulfovibrio vulgaris). However, justifications were highly subjective due to a lack of supportive analytical data, such as acetate, volatile fatty acids and methane concentrations. Despite this, findings served to add valuable information, providing details on the specific microbial groups associated with ABR treatment processes.
359

Functional characterisation of heterotrophic denitrifying bacteria in wastewater treatment systems

Ramdhani, Nishani January 2005 (has links)
Thesis (M.Tech.: Biotechnology)-Dept. of Biotechnogy, Durban Institute of Technology, 2005 xvi, 85 leaves : ill. ; 31 cm / Atmospheric nitrogen pollution is on the increase and human activities are directly or indirectly responsible for the generation of the various nitrogen polluting compounds. This can lead to the two major problems of eutrophication and groundwater pollution. Therefore, the removal of nutrients such as nitrogen and phosphorus from wastewater is important. Nitrogen removal from wastewater is achieved by a combination of nitrification and denitrification. Thus, there is a need to identify and characterise heterotrophic denitrifying bacteria involved in denitrification in wastewater treatment systems. The aim of this study, therefore, was to characterise heterotrophic denitrifying bacteria through detailed biochemical and molecular analysis, to facilitate the understanding of their functional role in wastewater treatment systems. Drysdale (2001) isolated heterotrophic denitrifiers to obtain a culture collection of 179 isolates. This culture collection was used to screen for nitrate and nitrite reduction using the colorimetric biochemical nitrate reduction test. The isolates were thereafter Gram stained to assess their gram reaction, cellular and colonial morphology. Based on these results identical isolates were discarded and a culture collection of approximately 129 isolates remained. The genetic diversity of the culture collection was investigated by the analysis of polymerase chain reaction (PCR)-amplified 16S ribosomal DNA (rDNA) fragments on polyacrylamide gels using denaturing gradient gel electrophoresis (DGGE). Thus DNA fragments of the same length but different nucleotide sequences were effectively separated and microbial community profiles of eight predominant isolates were created. Batch experiments were conducted on these eight isolates, the results of which ultimately confirmed their characterisation and placed them into their four functional groups i.e. 3 isolates were incomplete denitrifiers, 2 isolates were true denitrifiers, 2 isolates were sequential denitrifiers and 1 isolate was an exclusive nitrite reducer.
360

Determination of the heterotrophic and autotrophic active biomass during activated sludge respirometric batch assays using molecular techniques

Ismail, Arshad January 2008 (has links)
Thesis (D.Tech.: Biotechnology)-Dept. of Biotechnology, Durban University of Technology, 2008. xxiv, 322 leaves / Activated sludge models now in use worldwide for the design and operation of treatment systems use hypothetical concentrations of active organisms. In order to validate and calibrate model outputs, concentrations and activities of organisms responsible for nitrification and denitrification need to be reflected by actual measurements. This research has been initiated by the observation of an increasing gap of suitable techniques that exist in the direct measurement and separation of active biomass components, responsible for COD removal and denitrification.

Page generated in 0.0795 seconds