• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 313
  • 85
  • 68
  • 26
  • 16
  • 16
  • 16
  • 16
  • 16
  • 15
  • 13
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 591
  • 591
  • 186
  • 143
  • 138
  • 133
  • 118
  • 117
  • 114
  • 109
  • 108
  • 85
  • 85
  • 85
  • 69
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Process development for co-digestion of toxic effluents : development of screening procedures

Dlamini, Sithembile January 2009 (has links)
Submitted in partial fulfillment of academic requirements for the degree of Masters of Technology: Department of Chemical Engineering, Durban University of Technology, 2009. / The primary objective of this project was to establish a screening protocol which could be used to access high strength/toxic effluent for toxicity and degradability prior to being disposed in wastewater treatment works. The serum bottle method (materials and method section) is simple, makes use of small glass vials (125 mℓ-volume were used in this research) which do not require any stirring nor feeding device or other engineered tool: a serum bottle is sealed immediately after all components are poured inside and thereafter conducted in a batch mode and occasionally shaken to ensure adequate homogenisation of the components. The only variables which are regularly measured are the volume of biogas produced and gas composition. The two assays, originally developed by Owen et al. (1979) to address the toxicity and the biodegradability have been combined in a single test called AAT, Anaerobic Activity Test, which enables one to assess simultaneously the inhibitory effect on the methanogenic biomass and the biodegradability of the test material as well as the ability of the biomass to adapt to the test material and therefore to overcome the initial inhibition. The screening protocol is illustrated in Annexure A. The protocol consists of a sequence of assays which employ the serum bottle methodology. A first step of the procedure is aimed at rapidly estimating whether the effluent is potentially toxic to the methanogenic biomass and in what concentration. The second step is a more extensive screening, aimed at precisely characterising the toxicity of the effluent, the extent of biodegradation that can be achieved, as well as at establishing whether a potential for adaptation of the biomass exists upon exposure. If the sample passes the screening stage, the same serum bottle method will be used to conduct a series of batch co-digestion experiments aimed at evaluating a convenient volumetric ratio between the test material and the readily biodegradable substrate. Finally, a laboratory-scale codigestion trial could simulate the full-scale process, thus enabling the selection of appropriate operating conditions for the start-up of the full-scale implementation. This the protocol has been used to assess the amenability to be anaerobically (co)digested of four industrial effluents, i.e. size and distillery effluents which are classified as high strength and scour and synthetic dye effluents classified as toxic. From the biodegradability and toxicity assays the following conclusions were drawn. The size and distillery effluent were found to be ii degradable at 32 g COD/ℓ and 16 g COD /ℓ concentrations respectively. Concentrations higher than these stipulated above were found inhibitory. Scour effluent was found to be recalcitrant at all concentration tested and synthetic dye was 100 % degradable at 0.12 g COD/ℓ and lower and highly inhibitory at concentration higher than 1.1 g COD/ℓ. Co-digestion experiment using serum bottle AAT method were undertaken between effluents i.e. size + distillery, size + scour, distillery + synthetic dye in an attempt to verify whether the digestion performance benefits from simultaneous presence of the two substrates. The volumetric ratios between the effluents were 1:1, 1:2, 2:1. The presence of two mixtures in the case of size and distillery had better methane production compared to individual substrate i.e. size or distillery separate. The mixture with volumetric flow rate ratio of 2:1 (size: distillery) was preferable in terms of process performance as it had highest COD removal compared to the other mixtures /ratios and individual substrates. The mixture of size and scour (2:1) had highest degradation percentage compared to other ratios but not high enough to qualify as degradable (less than 50 %). The mixture of distillery and synthetic dye had the same pattern with ratio of 2:1 giving the best COD conversion. The pattern than can be drawn from the degradability of mixtures is: the degradability of mixtures increase with the increasing amount of the most biodegradable compound/effluent in the mixture. Serum bottle results provided the detailed information regarding the safe operating parameters which should be used during the starting point for the larger scale investigation i.e. lab-scale investigations. The lab scale investigations were conducted primarily to validate screening and monitor how the digestion progresses and also to provide data for future project i.e. pilot plant investigation. Other effluents i.e. scour and synthetic dye and their co-digestion mixture were excluded from the lab-scale investigations since they were found to be non- biodegradable i.e. their COD conversion was less the 50 % in the screening protocol. Due to time constrains and other technical difficulties in the laboratory, the co-digestion of size and distillery mixture trials we not conducted on the laboratory scale. Laboratory-scale digestion trials showed that the best organic loading rate for distillery effluent in terms of reactor performance and stability was 1.0g COD/ℓ with efficiency of about 45 %, and for size was 2.0g COD/ℓ with an efficiency of 40 %. The efficiencies obtained in both effluents trials could be greatly improved by acclimation; however these results showed that the digestion of these effluents on the bigger scale is possible.
362

An integrated computational fluid dynamics an kinetics study of ozonation in water treatment.

Huang, Tzu Hua. January 2005 (has links)
Computational fluid dynamic (CFO) modelling has been applied to examine the operation of the prc-ozonation system at Wiggins Waterworks, operated by Umgeni Water in Durban, South Africa. Ozonation is employed in water treatment process primarily to achieve the oxidation of iron and manganese, the destruction of micro-organisms and the removal of taste and odour causing compounds. It also aids in the reduction of the colour of the final water, enhancement of algae removal and possible reduction of coagulant demand. A hydrodynamic model has been satisfactorily verified by experimental tracer tests. The effect of the gas injection was modelled by increasing the level of turbulence intensity at the ozone contactor inlet. The model prediction of the overall tracer response corresponded closely to the experimental results. The framework of ozone reaction modelling was subsequently established using values of rate constants from the literature. An accurate prediction of the ozone concentration profile requires the application of the correct ozone kinetics involved. In raw waters, the depletion of ozone is influenced by the presence of natural organic matters (NOM). The observed ozone decay was found in good agreement using the pseudo first-order rate law. By measuring the total organic carbon (TOC) as a surrogate for NOM, the experimentally determined rate constants can be calculated to account for the effects of the ozone doses and the water quality. The characterisation study also aimed to provide sufficient information on ozone depletion and to be operated easily, without the lengthy and costly analyses ofa detailed kinetics study. The predicted profile of residual ozone concentration suggests the current operating strategy can be improved to optimise the ozone utilisation. The proposed monitoring point was suggested to be at the end of second companment where most ozone reactions have been completed. By coupling the transport equations of the target compounds with their chemical reaction rates, the concentration profile of these compounds such as ozone can be predicted in order to assist the understanding of an operation and to attain better interpretation of experimental results. / Thesis (Ph.D.)-University of KwaZulu-Natal, 2005.
363

A study on sustainable waste disposal in South Africa using mechanical biological waste treatment.

January 2009 (has links)
The landfilling of Municipal Solid Waste poses a threat to the environment in the form of landfill emissions. These emissions are a result of the biochemical breakdown of the waste in the anaerobic landfill environment. A solution to this problem has been found in the form of the mechanical-biological treatment of waste. This technology involves mechanical and biological processing of the waste before it is placed in the landfill. The pretreatment accelerates the degradation of the waste resulting in the landfilling of a more biologically stable product, resulting in a reduction of the emission potential of the landfill. This research aims at investigating the applicability and efficiency of a passively ventilated MBT windrow system under a sub-tropical climate. The research was conducted in two stages: the first stage focused on the implementation and analysis of the Mechanical Biological Treatment (MBT) process with aerobic windrows, employing the Dome Aeration Technology (OAT) (Mollekopf et al. 2002). Three OAT windrows were constructed at the Bisasar Road Landfill in Durban in order to study the efficiency of the process after different composting timeframes (8 and 20 weeks). The study proved that the use of the OAT technology is a viable option. The second stage was the analysis of this treated waste in an anaerobic environment, in order to simulate landfill conditions and, thus gain insight into the effect of MBP on landfill emissions. Six Iysimeters and 5 columns as well as numerous eluate tests were conducted in order to study the "post-Iandfilled" behaviour of the waste and the effect that waste treatment, composting time and screening have on liquid and gaseous emissions. A basic cost estimate using the Clean Development Mechanism for financial assistance was conducted. The results of this research were then utilised to make recommendations on sustainable waste disposal options. The findings of the research were that although the MBT did not reduce emission levels sufficiently to allow for a 40 year landfill aftercare period, the benefit over the landfilling of untreated waste is significant. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2009.
364

Microbiological investigations into granular sludge from two anaerobic digesters differing in design and industrial effluent purified.

Howgrave-Graham, Alan R. January 1995 (has links)
Due to a combination of selection criteria, sludges from upflow anaerobic digesters treating industrial waste waters consist primarily of well-settling, dense agglomerates called granules. Quantification of the component mixed microbial populations of these granules has been severely restricted by the inability of researchers to disrupt them without concomitantly destroying numerous cells. In situ quantification using light and electron microscopy is complicated by the high cell numbers and bacterial diversity; the small cell size; and the destructive nature of electron microscopy preparative techniques preventing the viewing of more than a small percentage of the population at a time. For these reasons, in this investigation, standardization of qualitative electron microscopic techniques was performed prior to their application to granules. Isolation and electron and light microscopic techniques were applied to granules from a fullscale clarigester treating effluent from a maize-processing factory. In addition, a method using montaged transmission electron micrographs (TEMs) taken along a granule radius, and image analysis, was developed for bacterial quantification within granules. This method, together with antibody probe quantification, was applied to granules from an upflow anaerobic sludge blanket (UASB) digester treating a brewery effluent. The clarigester granules contained a metabolically and morphologically diverse population of which many members were not isolated or identified. By contrast, the UASB digester granules consisted primarily of morphotypes resembling Methanothrix, Methanobacterium and Desulfobulbus, in order of predominance. However, only about one-third of the population reacted with antibody probes specific to strains of bacterial species expected to occur within these granules. According to the antibody probe library used, the Methanobacterium-like cells observed in TEMs were probably Methanobrevibacter arboriphilus. From this study it is apparent that different anaerobic digester designs, operational parameters, and the chemical composition of the waste water purified, are factors which influence the formation and maintenance of granules differing with respect to their microbial populations. Until the difficulties associated with quantification are overcome, the processes governing granule formation and/or population selection will remain obscure. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 1995.
365

Development of a bioreactor system using a pine bark matrix for the removal of metal ions from synthetic aqueous solutions.

Van Zuydam, Jason Peter. 06 November 2013 (has links)
Many industries use, or produce, metal-containing solutions which must be treated for reuse or discharge to sewer. One such treatment is biological and both living and dead materials have been investigated for the abstraction of metal ions from solution. Studies on systems containing only a single biosorbent are well documented, and mostly involve optimisation of biosorption capacities and metal uptake rates through modification of Biological Support Particle (BSP) size and surface characteristics. Literature on dual biosorbent studies is sparse. The commercial application of biosorption technology in wastewater treatment remains largely unexplored and unexploited. The primary objective here was to assess the potential of forced-upflow packed-bed bioreactors, containing dual biological sorbents, for treating a synthetic wastewater containing copper, zinc and cadmium, at both laboratory- and pilotscale. Pine bark was selected as BSP since it is an abundant, relatively cheap, agricultural waste product in South Africa, and is known to sorb metal ions. Initial experiments aimed to optimise biofilm development on the pine bark surfaces, since microbial biomass is also known to sequester metal ions. Systems comprising either one, or both, these biosorbents were compared for their efficiency in metal removal. The effects of type, size, and state of decomposition, of the pine bark, the addition of supplementary nutrients (Voermolas) and the mixing conditions, on the metal biosorption capacity and reaction kinetics of the systems were also studied. All experiments were conducted at an initial metal concentration of 100mg.ℓ⁻¹with both composted and uncomposted pine bark as BSP. The former supported microbial colonisation and resisted biofilm sloughing, but degraded rapidly causing engineering difficulties. Uncomposted pine bark showed the same ability, but was also physically more robust. Organic compounds leached from the pine bark did not hinder microbial colonisation of the BSP; rather they served as additional nutrients. Literature studies suggest that these compounds would not significantly compromise the COD or increase the toxicity of the final effluent. Biofilms developed without supplementary nutrients, but Cd²⁺ and Zn²⁺ were sorbed more effectively in bioreactors containing Voermolas (39% and 38% Cd²⁺ removal, 36% and 32% Zn²⁺ removal, in 0.2% and 0.1% Voermolas solutions respectively) than in unsupplemented systems (25% Cd²⁺ removal and 20% Zn²⁺ removal). Conversely, Cu²⁺ was removed most efficiently in the absence of supplementary nutrients. Based on biosorption of the target metal ions, 0.1% (v/v) Voermolas was the most effective concentration of supplementary nutrients. Raw, un-colonised pine bark nuggets (16-24mm), and plastic bioballs (commercially available, bespoke BSP), were compared in laboratory-scale bioreactors by measuring the decrease in residual metal ion concentrations over time, and changes in the solution pH. These experiments showed that the two BSPs did not differ significantly in their performance as a support matrix, or as a metal sorbent (30.6% and 32.6% of metal ion remained in solution when using bioballs and pine bark respectively). However, the presence of a biofilm on both these BSPs, improved the overall performance of the bioreactors significantly (for the bioball BSP, residual metal ion levels decreased from 30.6%, in the absence of a biofilm, to 11.0% with a biofilm present. Similarly, for the pine bark BSP, residual metal ion levels decreased from 32.6%, in the absence of a biofilm, to 7.3% with a biofilm present). A cost comparison of the two BSPs showed that raw pine bark nuggets were available at less than 0.1% of the cost of the bioballs. At pilot-scale, modelled kinetic data compared poorly with experimentally determined results, but minimum residual metal concentrations for Cu (1.7mg.ℓ⁻¹) and Zn (4.2 mg.ℓ⁻¹) were below South African (eThekwini Municipality) regulatory limits for discharge to sewer (5mg,ℓ⁻¹ for both), and sea outfall (3mg.ℓ⁻¹ Cu and 20mg.ℓ⁻¹ Zn). However, for Cd the final residual metal concentration (5.6mg.ℓ⁻¹) was above the regulatory discharge threshold for any receiving system. Although some of the effluents from the system investigated could not be legally released into the municipal sewer system without further remediation, the study showed that a system combining living and dead biomass in a single reactor is capable of significantly reducing dissolved metal concentrations in synthetic wastewaters without temperature or pH adjustment. Furthermore, such a system can operate at pilot-scale, where a pine bark matrix represents a significant cost saving over conventional plastic BSPs. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
366

The effect of wastewater works on foraging behaviour and metal content of Neoromicia nana (Family : Vespertilionidae)

Naidoo, Samantha. January 2011 (has links)
Anthropogenic disturbance from urbanization has introduced a range of contaminants into freshwater ecosystems. Wastewater Treatment Works (WWTW) in particular, deposit effluent with high metal concentrations directly into rivers. These pollutants may affect river biota directly or through modifications to habitat and prey. Therefore, the impact of metal pollution through a food chain should be evident in high trophic level predators such as Neoromicia nana. N. nana is a small, insect-eating bat that occurs in forest and riparian habitats in Africa. Most importantly, it is an urban exploiter, i.e. a species that takes advantage of anthropogenic food and habitat resources. I investigated the foraging behaviour and metal content of N. nana at wastewater-polluted sites (WWTW sludge tanks and sites downstream of wastewater discharge into the rivers) and unpolluted sites (sites upstream of wastewater discharge) at three urban rivers in Durban, South Africa, during winter and summer. To assess water quality, I determined cadmium, copper, chromium, iron, nickel, zinc and lead concentrations using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). To investigate the foraging behaviour of N. nana, I quantified relative N. nana abundance, and feeding activity from recorded echolocation calls. Using ICP-OES, I quantified metal concentrations in three tissues (liver, kidney and muscle). My results show that concentrations of most metals were generally lowest upstream, intermediate at downstream sites and highest at the tanks. The relative abundance and feeding activity of N. nana were significantly higher at wastewater-polluted sites than at upstream sites, despite there being significantly more insect orders upstream. However, pollution-tolerant Chironomidae (Diptera), were significantly more abundant at wastewater-polluted sites. Indeed, at wastewater-polluted sites, Diptera represented the highest percentage of insects in the diet of N. nana. Essential metals (copper, zinc and iron) were detected in all tissue samples of N. nana. In contrast, the toxic metals cadmium, chromium and nickel were present in tissue of bats only at wastewater-polluted sites (except one upstream occurrence of cadmium). This suggests that these metals may accumulate in tissue through the ingestion of pollutant-exposed prey. Thus, metal pollution from WWTWs affects not only water quality of rivers, but also the diversity of resident aquatic insects and ultimately the ecology of N. nana populations, which may pose serious long-term health risks for these top predators. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2011.
367

Investigation into the effect of stripped gas liquor on the anaerobic digestion of Fischer-Tropsch reaction water.

Roopan, Renésha. 20 October 2014 (has links)
The Fischer-Tropsch reaction technology is utilised in Sasol’s Coal-to-liquid plant to produce liquid fuels from low grade coal. There are several processes on the Coal-to-liquid plant that generate aqueous streams which contain a high organic load and require treatment. The main contributors to the wastewater are the Phenosolvan plant, producing stripped gas liquor (SGL), and the Synthol plant, producing Fischer-Tropsch reaction water (FTRW). Stripped gas liquor contains water, organic acids, ammonia, and potentially toxic phenols. Fischer-Tropsch reaction water contains volatile fatty acids and alcohol. Stripped gas liquor is therefore nitrogen-rich while FTRW is nitrogen-deficient and requires nutrient supplementation for anaerobic treatment. Therefore co-treatment of the two streams could reduce nitrogen supplementation requirements. This study is part of a larger project to determine the feasibility of anaerobically co-digesting FTRW and SGL. This study has looked at the influence of SGL on the methanogenic activity of FTRW-acclimated sludge and involved the development of a method which allows accurate recording of the methanogenic activity in batch assays. Other studies involving the anaerobic digestion of high phenolic wastewaters showed that the phenol had an inhibitory effect on the specific methanogenic activity of the sludge, which was not acclimated to the phenol. The objective of this work was to test the hypotheses that (1) anaerobic sludge acclimated to FTRW will be inhibited by high molecular weight organics in SGL and (2) FTRW-acclimated sludge will not degrade phenolic compounds in SGL. This information will be used for designing process configurations for simultaneous treatment of the two streams with minimum contamination of the effluent stream. The serum bottle was used as a small batch reactor and the biogas production was monitored as an indication of the state of the reaction. The biogas produced was collected and measured by the downward displacement of a sodium hydroxide solution, which absorbed the carbon dioxide and collected only the methane. A concentration of 1 g COD/ℓ FTRW was chosen as the reference test due to the reproducibility of the replicates within each experiment as well as its reproducibility across different batches of sludge. For the first inhibition test, the test units contained an additional 5% SGL (0.05 g COD/ℓ SGL) and an additional 15% SGL (0.15 g COD/ℓ SGL, i.e. 13% of the total COD load) respectively, added to 1 g COD/ℓ FTRW. The 5% SGL test unit showed no inhibition compared to the reference unit. There was a reduction in the specific methanogenic activity of the 15% SGL test units compared to the reference unit. Since the total COD load was not the same in each unit, it cannot be conclusively stated that the SGL was responsible for the reduction in SMA, but this seems a reasonable possibility in the light of results from the reference test selection experiments which showed higher SMA at higher organic loading rates. For the second inhibition test, the test units contained 85% FTRW (0.85 g COD/ℓ FTRW) and 15% SGL (0.15 g COD/ℓ SGL) to make up a total COD load of 1 g COD/ℓ. There was an increase in the specific methanogenic activity of the test unit compared to the reference unit. There was very little change in the phenol concentration. Therefore, it was concluded the addition of SGL potentially reduced the SMA and that this could be an inhibitory effect, but that any inhibition would be a function of the concentration of potentially inhibitory substances in SGL and that these concentrations vary from batch to batch. However, the degree of SMA reduction is fairly low and would not prevent co-digestion of the two streams at the concentrations tested. It has been shown that FTRW anaerobic digestion can proceed adequately in the presence of SGL. There was some evidence that phenolics were degraded but at a much slower rate than COD. The percentage reduction in SMA due to additional SGL at concentrations and SGL:FTRW ratios tested was between 0 and 51%. Ultimately, this work is a first step in the development of a co-digestion model relating organic loading rate, SGL:FTRW feed ratio to methane recovery and extent of biodegradation of phenol for use in the design and optimization of a co-digestion system. / M.Sc.Eng. University of KwaZulu-Natal, Durban 2014.
368

Temporal effect on nitrogen removal in a subsurface flow constructed wetland

Hanson, Carter Curtis January 1996 (has links)
A subsurface flow constructed wetland planted with the common reed (Phragmites australis) and softstem bulrush (Scirpus validus) was built in East Central Indiana. The objective of this study was to determine if temperature had an effect on nitrogen (N) removal from the wetland. The research was conducted from the first week of October 3, 1995 to the first week in December 5, 1995 why the wetland froze. Water samples were taken from 5 samplings sites in the system. Each sample was analyzed for organic-N, ammonia, nitrate, and total-N. In the system statistically significant amounts of organic-N, nitrate, and total-N were removed. Ammonia lever reductions, however, were not significant. Organic-N had a mean removal of 37% (8 mg/1) 'Nitrate had a mean removal of 96% (2.3 mg/1). Total-N removal over the sampling period averaged 30% (12 mg/1). The N results were regressed against air and wastewater temperatures. Wastewater temperature was more important because it had a direct impact can the plants and microbes in the system. Warmer temperatures sustained a higher metabolism for the biota in the system. Air temperature had an indirect impact on efficiency of N removal from the wastewater flowing through the wetland. The primary impact .: f the air temperature was on water temperature which then affected the metabolism of or a nc ns in the wetland cell. Greater removal efficiencies were seen during high temperature periods and lower removal efficiencies were noted when the temperatures were low. / Department of Natural Resources and Environmental Management
369

Nitrogen removal and biomass production from a harvested and unharvested scirpus wetland

Schultz, Paul Eaton January 1997 (has links)
A subsurface flow constructed wetland was built at the Wastewater Treatment Plant in Muncie, Indiana, in May, 1995. In May, 1996, this wetland was divided into two equal cells and planted with Scirpus validus vahl (softstem bulrush). Samples were collected from July 30, 1996, through October 22, 1996. This study had two objectives. The first was to determine if harvesting the aboveground biomass of the Scirpus would affect the wetland's ability to remove nitrogen from the wastewater. The second objective of this study was to determine if harvesting the bulrush twice during a growing season would substantially increase the annual biomass production. Water was collected from four locations in each cell and analyzed for organic nitrogen, ammonical nitrogen, nitrate, and total nitrogen. The concentration of each nitrogen parameter was significantly reduced between the inlet and well 1 in each cell of the wetland. There were no significant reductions in nitrogen concentration in subsequent sampling locations. There were also no significant differences between the two wetland cells. / Department of Natural Resources and Environmental Management
370

Evaluating the effectiveness of commercial nitrifying bacteria in a constructed wetland

Smith, Timothy R. January 1996 (has links)
This research was conducted to determine the effects of commercially available nitrifying bacteria in a constructed wetland. The study was conducted at Paws, Inc., near Desoto, Indiana during the summer of 1995. The wetland, called Solar Aquatics Treatment System (SAS), was developed by Ecological Engineering Associates and constructed in a, greenhouse. The commercial nitrifying bacteria (Bacta-Pur), contained Nitrosomonas and Nitrobacter Spp. and have been added to the wetland for the past five years to aid in the removal of nitrogen.Water samples were taken from the wetland and analyzed for ammonia, nitrite, nitrate, dissolved oxygen, hydrogen ion concentrations and water temperature from Monday through Friday for three weeks. A baseline was established from these samples. After three weeks of testing the addition of Bacta-Pur to the wetland was discontinued.To determine whether these additional bacteria were needed, testing without the Bacta-Pur was conducted for three weeks. These samples were collected and analyzed for the same parameters as those used to establish baseline information.Ammonia concentrations were significantly lower without the addition of Bacta-Pur bacteria. There were no significant differences for concentrations of nitrite and nitrate. The water temperature was higher in the three weeks when no Bacta-Pur was added. This was due to the increase in ambient temperature which caused the water temperature in the SAS to increase. Since the nitrogen compounds either remained the same or decreased in concentration at the effluent without the addition of bacteria, the addition of Bacta-Pur is not needed in order to remain in compliance with EPA regulations for effluent standards.A container experiment was conducted to provide an' environment that had no introduced bacteria before the addition of Bacta-Pur. There were no significant differences for the nitrogen compounds between wastewater samples with addition and without addition of Bacta-Pur bacteria. / Department of Natural Resources and Environmental Management

Page generated in 0.1257 seconds