61 |
Evaluation of chromosomally-integrated luxCDABE and plasmid-borne GFP markers for the study of localization and shedding of STEC O91:H21 in calvesHong, Yingying 01 May 2011 (has links)
Shiga toxin-producing Escherichia coli (STEC) has been recognized as an important foodborne pathogen. Of this group, O91 is one of the common serogroups frequently isolated from patients and food in some countries, with O91:H21 being previously implicated in hemolytic uremic syndrome (HUS). Cattle are principle reservoirs for STEC, and studies examining STEC shedding in cattle often include experimental inoculation of strains of interest using antibiotic resistance markers for identifiable recovery. However, indigenous fecal microbes exhibiting similar resistance patterns can confound such studies. Such was the case in a study by our group when attempting to characterize shedding patterns of O91:H21 in calves, leading us to seek other, more effective, markers. Among our strategies was the development of a chromosomally integrated bioluminescence marker via transposon mutagenesis using a luxCDABE cassette from Photorhabdus luminescens and a plasmid borne GFP marker via transformation of the pGFP vector. The luxCDABE marker was inserted on host chromosome at a site that was 27 nucleotides before the stop codon of gene yihL and confirmed to have little impact on important virulence genes and growth rate with a very high stability. In contrast, plasmid borne GFP marker showed poor stability without the application of appropriate antibiotic selection pressure. For calves receiving luxCDABE-marked O91:H21, the fecal counts of the organismranged from 1.2 x 10 3 to 1.3 x 10 4CFU/g at two days post inoculation and decreased to 5.8 to 8.7 x 10 2 CFU/g or undetectable level after two weeks.Intestinal contents sampled from various positions at day 14 post inoculation indicated that cecum and descending colon may be the primary localization sites of this O91:H21 strain. Compared to antibiotic resistance markers, the use of bioluminescence markers does not require the restricted pre-inoculation screening of animals. The enumeration of luxCDABE-marked O91:H21 from feces and intestinal contents was easily accomplished and confirmed reliable by M-PCR analysis under the presence of indigenous bacteria which cannot be eliminated by antibiotic-supplemented selective plates. Therefore, the chromosomal integrated luxCDABE marker may be a better model for the study of STEC colonization and shedding in cattle.
|
62 |
The Effects Of Geometric Design Parameters On The Flow Behavior Of A Dual Pulse Solid Rocket Motor During Secondary FiringErtugrul, Suat Erdem 01 November 2012 (has links) (PDF)
The ability of a propulsion system is very crucial for the capability of a missile or a rocket system. Unlike liquid propellant rocket motors, the only control mechanism of the thrust value is the propellant geometry in solid propellant rocket motors. When the operation of solid propellant rocket motor has started, it cannot be stopped anymore. For this main reason the advance of dual pulse motor technology has started. The aim of this study is to investigate the geometrical effects of design parameters on the flow behavior of a dual pulse solid propellant rocket motor by using commercial Computational Fluid Dynamics (CFD) methods. For the CFD analysis, a generic dual pulse rocket motor model is constituted. Within this model, initially four different geometry alternatives of Pulse Separation Device (PSD) are analyzed. To begin PSD analyses, mesh sensitivity analyses are performed on one PSD geometry alternative. By defined grid size, the analyses of PSD geometry alternatives are performed. Computed results were compared in terms of flow behavior (flow streamlines, velocity distribution, turbulent kinetic energy&hellip / etc.) with each other. With the selected PSD geometry alternative the effects of L/D ratio (Length/Diameter ratio) of first pulse chamber, Achamb/APSD ratio (Chamber area/PSD opening area) and APSD/Ath ratio (PSD opening area/Throat area) on the flow behavior is investigated. Flow analyses are performed by simulating the unsteady flow of second pulse operation. With the performed analyses, it is aimed to identify generic geometric definitions for a dual pulse rocket motor.
|
63 |
Experimental studies of wind turbine wakes : power optimisation and meanderingMedici, Davide January 2005 (has links)
Wind tunnel studies of the wake behind model wind turbines with one, two and three blades have been made in order to get a better understanding of wake development as well as the possibility to predict the power output from downstream turbines working in the wake of an upstream one. Both two-component hot-wire anemometry and particle image velocimetry (PIV) have been used to map the flow field downstream as well as upstream the turbine. All three velocity components were measured both for the turbine rotor normal to the oncoming flow as well as with the turbine inclined to the free stream direction (the yaw angle was varied from 0 to 30 degrees). The measurements showed, as expected, a wake rotation in the opposite direction to that of the turbine. A yawed turbine is found to clearly deflect the wake flow to the side showing the potential of controlling the wake position by yawing the turbine. The power output of a yawed turbine was found to depend strongly on the rotor. The possibility to use active wake control by yawing an upstream turbine was evaluated and was shown to have a potential to increase the power output significantly for certain configurations. An unexpected feature of the flow was that spectra from the time signals showed the appearance of a low frequency fluctuation both in the wake and in the flow outside. This fluctuation was found both with and without free stream turbulence and also with a yawed turbine. The non-dimensional frequency (Strouhal number) was independent of the freestream velocity and turbulence level but increases with the yaw angle. However the low frequency fluctuations were only observed when the tip speed ratio was high. Porous discs have been used to compare the meandering frequencies and the cause in wind turbines seems to be related to the blade rotational frequency. It is hypothesized that the observed meandering of wakes in field measurements is due to this shedding. / QC 20101018
|
64 |
The wake of an exhaust stack in a crossflowAdaramola, Muyiwa S 23 April 2008
Relatively few studies have been carried out on the turbulent wake structure of a finite circular cylinder and a stack partially immersed in a flat-plate turbulent boundary layer. There is a need to develop a better understanding of the wakes of these structures, since they have many important engineering applications. This thesis investigates the influence of the aspect ratio on the wake of a finite circular cylinder and the effects of the ratio of jet flow velocity to crossflow velocity (velocity ratio, R) on the wake of a stack in a cross-flow. <p>The wake characteristics of flows over a finite circular cylinder at four different aspect ratios (AR = 3, 5, 7 and 9) were investigated experimentally at a Reynolds number of ReD = 6104 using two-component thermal anemometry. Each cylinder was mounted normal to a ground plane and was either completely or partially immersed in a flat-plate turbulent boundary layer. The ratio of boundary layer thickness to the cylinder diameter was 3. <p>A similar turbulent wake structure (time-averaged velocity, turbulence intensity, and Reynolds shear stress distributions) was found for the cylinders with AR = 5, 7, and 9, while a distinctly different turbulent wake structure was found for the cylinder with AR = 3. This was consistent with the results of a previous study that focused on the time-averaged streamwise vortex structures in the wake. In addition, irrespective of the value of AR, high values were observed for the skewness and flatness factors around the free end of the cylinders, which may be attributed to the interaction of the tip vortex structures and downwash flow that dominates this region of the cylinder.<p>The wake characteristics of a stack of aspect ratio AR = 9 were investigated using both the seven-hole pressure probe and thermal anemometry. The seven-hole probe was used to measure the three components of the time-averaged velocity field, while the thermal anemometry was used to measure two components of the turbulent velocity field at various downstream locations from the stack. The stack was mounted normal to the ground plane and was partially immersed in a flat-plate turbulent boundary layer, for which the ratio of boundary layer thickness to the stack diameter was 4.5. In addition, measurements of the vortex shedding frequency were made with a single-component hot-wire probe. The cross-flow Reynolds number was ReD = 2.3 x 104, the jet Reynolds number ranged from Red = 7.6 x 103 to 4.7 x 104, and R was varied from 0 to 3. <p>In the stack study, three flow regimes were identified depending on the value of R: the downwash (R < 0.7), cross-wind-dominated (0.7 < R < 1.5), and jet-dominated (R ≥ 1.5) flow regimes. Each flow regime had a distinct structure for the time-averaged velocity and streamwise vorticity fields, and turbulence characteristics, as well as the variation of the Strouhal number and the power spectrum of the streamwise velocity fluctuations along the stack height. The turbulence structure is complex and changes in the streamwise and wall-normal directions within the near and intermediate stack and jet wakes. In the downwash and crosswind-dominated flow regimes, two pairs of counter-rotating streamwise vortex structures were identified within the stack wake. The tip-vortex pair and base-vortex pair were similar to those found in the wake of a finite circular cylinder, located close to the free end and the base of the stack (ground plane), respectively. In the jet-dominated flow regime, a third pair of streamwise vortex structures was observed, referred to as the jet-wake vortex pair, which occurred within the jet-wake region above the free end of the stack. The jet-wake vortex pair has the same orientation as the base vortex pair and is associated with the jet rise.
|
65 |
The Development of a Research Technique for Low Speed AeroacousticsMcPhee, Adam D. January 2008 (has links)
The aerodynamic sound generated by wind turbines was identified as a growing concern within the industry. Prior to performing wind turbine aeroacoustic research, however, a technique suitable for studying low speed airfoils needed to be designed, serving as the primary research objective. A review of aeroacoustic theory and literature indicated that low speed flows are best studied using experimental methods, leading to the design of a near field pressure measurement technique. To facilitate the near field pressure measurements, a custom piezoelectric sensor was developed, exhibiting a pressure and frequency range of approximately 67 to 140[dB], and 100 to 10000[Hz], respectively. As a secondary research objective, a series of experiments were performed to validate the designed technique. The experiments were performed in a non-anechoic wind tunnel using a cylindrical test specimen. Using the near field pressure measurements, as well as a simple far field measurement, the sources of aerodynamic sound were effectively resolved. The Strouhal numbers corresponding to the contributing flow structures were generally within 1.5[%] of correlation based predictions. The near field pressures were consistently 10 to 15[dB] higher than the far field, quantifying the benefit of the near field technique. The method was also effective in detecting the decreasing coherence of the aeroacoustic sources with increasing Reynolds number. A minor deficiency was observed in which the ability to localize aeroacoustic sources was impeded, however, the cylinder experiments were particularly vulnerable to such a deficiency. Although the near field pressure measurements were shown to be effective in characterizing the aeroacoustic sources, a number of recommendations are presented to further improve the flexibility and measurement uncertainty of the experimental technique.
|
66 |
The Development of a Research Technique for Low Speed AeroacousticsMcPhee, Adam D. January 2008 (has links)
The aerodynamic sound generated by wind turbines was identified as a growing concern within the industry. Prior to performing wind turbine aeroacoustic research, however, a technique suitable for studying low speed airfoils needed to be designed, serving as the primary research objective. A review of aeroacoustic theory and literature indicated that low speed flows are best studied using experimental methods, leading to the design of a near field pressure measurement technique. To facilitate the near field pressure measurements, a custom piezoelectric sensor was developed, exhibiting a pressure and frequency range of approximately 67 to 140[dB], and 100 to 10000[Hz], respectively. As a secondary research objective, a series of experiments were performed to validate the designed technique. The experiments were performed in a non-anechoic wind tunnel using a cylindrical test specimen. Using the near field pressure measurements, as well as a simple far field measurement, the sources of aerodynamic sound were effectively resolved. The Strouhal numbers corresponding to the contributing flow structures were generally within 1.5[%] of correlation based predictions. The near field pressures were consistently 10 to 15[dB] higher than the far field, quantifying the benefit of the near field technique. The method was also effective in detecting the decreasing coherence of the aeroacoustic sources with increasing Reynolds number. A minor deficiency was observed in which the ability to localize aeroacoustic sources was impeded, however, the cylinder experiments were particularly vulnerable to such a deficiency. Although the near field pressure measurements were shown to be effective in characterizing the aeroacoustic sources, a number of recommendations are presented to further improve the flexibility and measurement uncertainty of the experimental technique.
|
67 |
The wake of an exhaust stack in a crossflowAdaramola, Muyiwa S 23 April 2008 (has links)
Relatively few studies have been carried out on the turbulent wake structure of a finite circular cylinder and a stack partially immersed in a flat-plate turbulent boundary layer. There is a need to develop a better understanding of the wakes of these structures, since they have many important engineering applications. This thesis investigates the influence of the aspect ratio on the wake of a finite circular cylinder and the effects of the ratio of jet flow velocity to crossflow velocity (velocity ratio, R) on the wake of a stack in a cross-flow. <p>The wake characteristics of flows over a finite circular cylinder at four different aspect ratios (AR = 3, 5, 7 and 9) were investigated experimentally at a Reynolds number of ReD = 6104 using two-component thermal anemometry. Each cylinder was mounted normal to a ground plane and was either completely or partially immersed in a flat-plate turbulent boundary layer. The ratio of boundary layer thickness to the cylinder diameter was 3. <p>A similar turbulent wake structure (time-averaged velocity, turbulence intensity, and Reynolds shear stress distributions) was found for the cylinders with AR = 5, 7, and 9, while a distinctly different turbulent wake structure was found for the cylinder with AR = 3. This was consistent with the results of a previous study that focused on the time-averaged streamwise vortex structures in the wake. In addition, irrespective of the value of AR, high values were observed for the skewness and flatness factors around the free end of the cylinders, which may be attributed to the interaction of the tip vortex structures and downwash flow that dominates this region of the cylinder.<p>The wake characteristics of a stack of aspect ratio AR = 9 were investigated using both the seven-hole pressure probe and thermal anemometry. The seven-hole probe was used to measure the three components of the time-averaged velocity field, while the thermal anemometry was used to measure two components of the turbulent velocity field at various downstream locations from the stack. The stack was mounted normal to the ground plane and was partially immersed in a flat-plate turbulent boundary layer, for which the ratio of boundary layer thickness to the stack diameter was 4.5. In addition, measurements of the vortex shedding frequency were made with a single-component hot-wire probe. The cross-flow Reynolds number was ReD = 2.3 x 104, the jet Reynolds number ranged from Red = 7.6 x 103 to 4.7 x 104, and R was varied from 0 to 3. <p>In the stack study, three flow regimes were identified depending on the value of R: the downwash (R < 0.7), cross-wind-dominated (0.7 < R < 1.5), and jet-dominated (R ≥ 1.5) flow regimes. Each flow regime had a distinct structure for the time-averaged velocity and streamwise vorticity fields, and turbulence characteristics, as well as the variation of the Strouhal number and the power spectrum of the streamwise velocity fluctuations along the stack height. The turbulence structure is complex and changes in the streamwise and wall-normal directions within the near and intermediate stack and jet wakes. In the downwash and crosswind-dominated flow regimes, two pairs of counter-rotating streamwise vortex structures were identified within the stack wake. The tip-vortex pair and base-vortex pair were similar to those found in the wake of a finite circular cylinder, located close to the free end and the base of the stack (ground plane), respectively. In the jet-dominated flow regime, a third pair of streamwise vortex structures was observed, referred to as the jet-wake vortex pair, which occurred within the jet-wake region above the free end of the stack. The jet-wake vortex pair has the same orientation as the base vortex pair and is associated with the jet rise.
|
68 |
Development of an Efficient Design Method for Non-synchronous VibrationsSpiker, Meredith Anne 24 April 2008 (has links)
This research presents a detailed study of non-synchronous vibration (NSV) and the development of an efficient design method for NSV. NSV occurs as a result of the complex interaction of an aerodynamic instability with blade vibrations. Two NSV design methods are considered and applied to three test cases: 2-D circular cylinder, 2-D airfoil cascade tip section of a modern compressor, and 3-D high pressure compressor cascade that encountered NSV in rig testing. The current industry analysis method is to search directly for the frequency of the instability using CFD analysis and then compare it with a fundamental blade mode frequency computed from a structural analysis code. The main disadvantage of this method is that the blades' motion is not considered and therefore, the maximum response is assumed to be when the blade natural frequency and fluid frequency are coincident. An alternate approach, the enforced motion method, is also presented. In this case, enforced blade motion is used to promote lock-in of the blade frequency to the fluid natural frequency at a specified critical amplitude for a range of interblade phase angles (IBPAs). For the IBPAs that are locked-on, the unsteady modal forces are determined. This mode is acceptable if the equivalent damping is greater than zero for all IBPAs. A method for blade re-design is also proposed to determine the maximum blade response by finding the limit cycle oscillation (LCO) amplitude. It is assumed that outside of the lock-in region is an off-resonant, low amplitude condition. A significant result of this research is that for all cases studied herein, the maximum blade response is not at the natural fluid frequency as is assumed by the direct frequency search approach. This has significant implications for NSV design analysis because it demonstrates the requirement to include blade motion. Hence, an enforced motion design method is recommended for industry and the current approach is of little value. / Dissertation
|
69 |
Stability Analysis and Economic Dispatch of an Isolated Power System with Wind GeneratorsLai, Yu-chieh 07 July 2011 (has links)
The objective of this thesis is to investigate the transient response and optimal economic dispatch of an isolated power system with wind generators. Different types of wind turbines and the classification of Stability are introduced. Then, the process of Transient stability analysis and the concept of Genetic Algorithms are given for explanation. In this thesis, the practical power system of Kinmen is selected for case study. The disturbances introduced by gusting wind and N-1 system contingency are considered in the transient stability analysis. Furthermore, in order to obtain both
accuracy and feasibility of the Optimal power dispatch by using Real-parameter Genetic Algorithms, the simulation results should be tested for the restrictions and requirements of the actual operation.
|
70 |
Experimental Investigations of Vortex Induced Vibration of A Flat Plate in Pitch OscillationYang, Yi 2010 December 1900 (has links)
A bluff structure placed in a flowing fluid, may be subjected to vortex-induced vibrations
(VIV). For a flat plate with only rotational degree of freedom, the VIV is
rotational oscillation. Based on the experimental investigation, vortex-induced oscillation
of the plate is studied. The Strouhal number is measured from the stationary
plate in a low speed steady wind tunnel. A set of vibration tests are conducted
to investigate the relationships between shedding frequency and vibration frequency.
“lock-in” phenomena is observed with and without large amplitude. An empiricalanalytical
model via introducing a nonlinear van der Pol oscillator is developed.
This thesis investigates the “lock-in” phenomena of a flat plate in pitch oscillation.
Results from wind tunnel experiments on a flat plate indicate the “lock-in” is
frequency “lock-in”, resonance which appears large response amplitude occurs in the
“lock-in” regime and may be influenced by “lock-in” phenomena.
|
Page generated in 0.0477 seconds