• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 86
  • 40
  • 13
  • 10
  • 8
  • 8
  • 7
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 232
  • 102
  • 74
  • 41
  • 36
  • 36
  • 28
  • 22
  • 21
  • 21
  • 20
  • 20
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Nardilysin is involved in autoimmune arthritis via the regulation of TNF-α secretion / ナルディライジンはTNF-αの分泌を制御し、自己免疫性関節炎の病態形成に関与する。

Fujii, Takayuki 25 September 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20667号 / 医博第4277号 / 新制||医||1024(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 三森 経世, 教授 妹尾 浩, 教授 竹内 理 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
42

Effect of Slip on Flow Past Superhydrophobic Cylinders

Muralidhar, Pranesh 01 January 2012 (has links) (PDF)
Superhydrophobic surfaces are a class of surfaces that have a microscale roughness imposed on an already hydrophobic surface, akin to a lotus leaf. These surfaces have been shown to produce significant drag reduction for both laminar and turbulent flows of water through large and small-scale channels. The goal of this thesis was to explore how these surfaces alter the vortex shedding dynamics of a cylindrical body when coated on its surface, thus leading to an alteration in drag and lift on these surfaces. A cylindrical body was chosen as it is a very nice representative bluff body and sets the stage for predicting the behavior of hydrofoils and other bluff bodies under flow with a slip boundary condition. In this work, a series of experiments were performed which investigated the effect of superhydrophobic-induced slip on the flow past a circular cylinder. In these experiments, circular cylinders were coated with a series of superhydrophobic surfaces fabricated from PDMS with well-defined micron-sized patterns of surface roughness or random slip surfaces fabricated by sanding Teflon cylinders or spray painting superhydrophobic paint on a smooth cylinder. The presence of the superhydrophobic surface was found to have a significant effect on the vortex shedding dynamics in the wake of the circular cylinder. When compared to a smooth, no-slip cylinder, cylinders coated with superhydrophobic surfaces were found to delay the onset of vortex shedding and increase the length of the recirculation region in the wake of the cylinder. For superhydrophobic surfaces with ridges aligned in the flow direction the separation point was found to move further upstream towards the front stagnation point of the cylinder and the vortex shedding frequency was found to increase. For superhydrophobic surfaces with ridges running normal to the flow direction, the separation point and shedding frequency trends were reversed. The vortices shed from these surfaces were found to be weaker and less interlaced leading to reduced circulation and lift forces on these cylinders. The effect of slip on bluff bodies and separating flow was dealt with in detail in this thesis and the results could be used to predict the impact of these surfaces on the flow past hydrofoils which combine skin friction dominated flow with separating flow.
43

Analysis of Two-Dimensional Fluid-Structure Interactions of a Plunging Flat Plate using Unsteady Discrete Vortex Method with MATLAB

Guerrero-Cortes, Nicolas R 01 January 2023 (has links) (PDF)
Fundamental intuition of aerodynamics begins with understanding steady flow, a time- independent flow state. A fluid region undergoing steady flow consists of constant properties such as pressure and velocity at different positions in the flow field. This time-independent principle is crucial for beginning a foundation of understanding aerodynamics; however, analyzing this state of flow was beyond the limit at my university's Fundamentals of Aerodynamics course. There was minimal education on time-dependent unsteady flow, which created a vacuum on my understanding of how flow can be analyzed with time. The purpose of writing this thesis is to create a framework for aspiring learners of aerodynamics to better comprehend unsteady flow, including myself. The basis for developing an understanding of unsteady flow is accomplished by analyzing the aerodynamics of a simple two-dimensional zero-thickness flat plate, using a numerical method called Discrete Vortex Method under steady and unsteady conditions. Constructing a numerical method for steady and unsteady flow requires a software to compute enormous quantities of linear equations, therefore a combination of numerous arguments, functions, and loops were developed on MATLAB written in the C/C++ languages. Results from the numerical methods will be compared with the experimental and theoretical results from Katz & Plotkin (2001). The Steady Discrete Vortex Method was a basis for calculating the circulation of the flat plate at varying angles of attack and freestream velocities. The Unsteady Discrete Vortex Method derived much of the self-induced calculations in the body-fixed coordinate system. At the same time, a time-stepping method was developed to calculate the coordinates as the flat plate and shed vortices translated from the origin of an additional frame of reference called the inertial coordinate system. A wake vortex is shed from the trailing-edge of the flat plate at each time step iv to model vorticity shed from a body in motion. The flat plate undergoes sudden acceleration and plunging maneuvers to demonstrate further effects of unsteady aerodynamic conditions. The results from the flat plate undergoing sudden acceleration with a Reynolds number of 68,435.8 was an increasing proportionality between the lift and circulation of the steady and unsteady case until reaching a constant trend as time increases, demonstrating the nature of low-speed flow reaching a steady state after a given period. The results from the flat plate undergoing plunging with a Reynolds number of 106,759.8 demonstrate a sinusoidal trend in the normal force experienced as the flat plate traverses in its sinusoidal plunging translation like that observed in the theoretical results. This thesis intends to expand on the understanding of unsteady aerodynamics by developing a numerical method that can alter its dependent factors to visualize the effects of changing specific parameters on pressure and force acting on the two-dimensional body.
44

Evaluation of Potential Surrogates for Listeria monocytogenes in Fresh Citrus-Specific Validation Studies

Casuga, Kimiko Grace 01 June 2023 (has links) (PDF)
The FSMA Produce Safety Rule (PSR) requires citrus packers to more closely assess, manage, and monitor food safety risks. Although there have been no foodborne illness outbreaks and only one recall in fresh citrus, the risk of pathogens coming in on the fruit and cross contamination during washing still exists. Packhouses have dynamic washing systems and in-plant validations may be the only way to demonstrate compliance with the PSR. In-plant validations use surrogates in place of pathogens, and none have been identified or validated for citrus. The aim of this research was to identify a surrogate for use in fresh citrus packhouses. Potential surrogates were screened for free chlorine resistance, survival under commercial storage conditions, and shedding and attachment characteristics during simulated washing. E. faecium NRRL B-2354 and P. pentosaceus NRRL B-14009 were selected for further study. Resistance to chlorine was not significantly different between E. faecium and L. monocytogenes FSL J1-031 when exposed to 3 ppm free chlorine for 30, 60, 90, and 120 s at 20 and 100 ppm TSB (pE. faecium and P. pentosaceus behavior was significantly different than L. monocytogenes (p=0.05), indicating that neither is a suitable surrogate. In shedding and attachment, either the fruit (shedding) or water (attachment) was inoculated, washing was simulated, and organisms were enumerated from the water (shedding) or fruit (attachment). Both potential surrogates were statistically different than L. monocytogenes (pE. faecium can be used for L. monocytogenes shedding estimates and E. faecium and P. pentosaceus can be used for attachment estimates. Overall, this research suggests that E. faecium NRRL B-2354 can be considered as a surrogate for L. monocytogenes in whole, fresh citrus validation studies on chlorinated washes and – with appropriate adjustments – on shedding and attachment characteristics.
45

DEVELOPING A QUANTITATIVE PCR ASSAY FOR DETECTING VIRAL VECTOR SHEDDING FROM ANIMALS

Chinnasamy, Swathee January 2011 (has links)
No description available.
46

Development and Validation of an Aeroelastic Ground Wind Loads Analysis Tool for Launch Vehicles

Ivanco, Thomas Glen 02 September 2009 (has links)
An analytical modal response tool was developed to investigate the characteristics of and to estimate static and dynamic launch vehicle responses to ground wind loads (GWL). The motivation of this study was to estimate the magnitude of response of the Ares I-X launch vehicle to ground winds and wind-induced oscillation (WIO) during roll-out and on the pad. This method can be extended to other launch vehicle designs or structures that possess a nearly cylindrical cross-section. Presented in this thesis is an overview of the theory used, a comparison of the theory with wind tunnel data, further investigation of the data to support the assumptions used within the analysis, and a prediction of the full-scale Ares I-X response. Additionally, an analytical investigation is presented that estimates the effect of atmospheric turbulence on WIO response. Most of the wind tunnel data presented in this report is taken from the GWL Checkout Model tested in the NASA Langley Transonic Dynamics Tunnel (TDT) in April 2007. The objective of the GWL Checkout Model was to reestablish and evaluate the capability of the facility to conduct GWL testing and to operate the associated equipment. This wind tunnel test was not necessarily intended to predict the full scale Ares vehicle response to GWL; however, it can be used to help validate the newly developed analytical method described in this thesis. A detailed GWL test incorporating updated vehicle designs and launch pad configurations of the Ares I-X flight test vehicle was also conducted in the TDT during the fall of 2008. This test provides more accurate predictions of the second bending mode response of the Ares I-X, and it models effects of the nearby tower and support structures. The proposed analytical method is also compared to select data from the Ares I-X GWL test; however, it is presented as normalized values to protect the sensitivity of the data. Results of the proposed analytical method show reasonable correlation to wind tunnel data. Also, this method was the first to determine that second bending mode WIO response was not only possible for the Ares I-X, but will also produce the most critical loads. Finally, an explanation is offered in this thesis regarding discrepancies between wind tunnel and full-scale WIO response data. / Master of Science
47

Computer Aided Analysis of Smoke Stack Designs

Servaites, Joseph Charles 01 September 1996 (has links)
The purpose of this research is to analyze the statics and dynamics of steel smoke stacks subject to excitation by aerodynamic forces. The wind loads experienced by smoke stacks arise from various phenomenon, the most prominent of which are static drag load, vortex shedding, and atmospheric turbulence. The nature of these loading sources around a cylinder are studied in detail. Both static and dynamic loads are capable of producing large tip deflections, and are of the most prominent design criteria for stack designers. A computer program, STACK1, has been created by modifying an existing analysis code, BEAM8, to be used specifically for stack analysis. This analysis code utilizes the transfer matrix method to perform detailed bending and vibration analyses. This new software has been developed to check stack designs for compliance with appropriate steel stack standards, and provide the designer with information regarding the static and dynamic response of the structure. A detailed analysis is performed to demonstrate the validity of approximating a tapered Timoshenko beam with a series of continuous, constant cross-section beams. / Master of Science
48

WAMS-based Intelligent Load Shedding Scheme for Preventing Cascading Blackouts

Veda, Santosh Sambamoorthy 07 January 2013 (has links)
Severe disturbances in a large electrical interconnection cause a large mismatch in generation and load in the network, leading to frequency instability. If the mismatch is not rectified quickly, the system may disintegrate into multiple islands. Though the Automatic Generation Controls (AGC) perform well in correcting frequency deviation over a period of minutes, they are ineffective during a rolling blackout. While traditional Under Frequency Load Shedding Schemes (UFLS) perform quick control actions to arrest frequency decline in an islanded network, they are not designed to prevent unplanned islanding. The proposed Intelligent Load Shedding algorithm combines the effectiveness of AGC Scheme by observing tie line flows and the speed of operation of the UFLS Scheme by shedding loads intelligently, to preserve system integrity in the event of an evolving cascading failure. The proposed scheme detects and estimates the size of an event by monitoring the tie lines of a control area using Wide Area Measurement Systems (WAMS) and initiates load shedding by removing loads whose locations are optimally determined by a sensitivity analysis. The amount and location of the load shedding depends on the location and size of the initiating event, making the proposed algorithm adaptive and selective. Case Studies have been presented to show that control actions of the proposed scheme can directly mitigate a cascading blackout. / Ph. D.
49

A Dynamic Attribute-Based Load Shedding and Data Recovery Scheme for Data Stream Management Systems

Ahuja, Amit 29 June 2006 (has links) (PDF)
Data streams being transmitted over a network channel with capacity less than the data rate of the data streams is very common when using network channels such as dial-up, low bandwidth wireless links. Not only does this lower capacity creates delays but also causes sequential network problems such as packet losses, network congestion, errors in data packets giving rise to other problems and creating a cycle of problems hard to break out from. In this thesis, we present a new approach for shedding the less informative attribute data from a data stream with a fixed schema to maintain a data rate lesser than the network channels capacity. A scheme for shedding attributes, instead of tuples, becomes imperative in stream data where the data for one of the attributes remains relatively constant or changes less frequently compared to the data for the other attributes. In such a data stream management system, shedding a complete tuple would lead to shedding of some informative-attribute data along with the less informative-attribute data in the tuple, whereas shedding of the less informative-attribute data would cause only the less informative data to be dropped. In this thesis, we deal with two major problems in load shedding: the intra-stream load shedding and the inter-stream load shedding problems. The intra-stream load shedding problem deals with shedding of the less informative attributes when a single data stream with the data rate greater than the channel capacity has to be transmitted to the destination over the channel. The inter-stream load shedding problem refers to shedding of attributes among different streams when more than one stream has to be transferred to the destination over a channel with the channel capacity less than the combined data rate of all the streams to be transmitted. As a solution to the inter-stream or intra-stream load shedding problem, we apply our load shedding schema approach to determine a ranking amongst the attributes on a singe data stream or multiple data streams with the least informative attribute(s) being ranked the highest. The amount of data to be shed to maintain the data rate below the capacity is calculated dynamically, which means that the amount of data to be shed changes with any change in the channel capacity or any change in the data rate. Using these two pieces of information, a load shedding schema describing the attributes to be shed is generated. The load shedding schema is generated dynamically, which means that the load shedding schema is updated with any change in (i) the rankings of attributes that capture the rate of change on the values of each attribute, (ii) channel capacity, and (iii) data rate even after load shedding has been invoked. The load shedding schema is updated using our load shedding schema re-evaluation algorithm, which adapts to the data stream characteristics and follows the attribute data variation curve of the data stream. Since data dropped at the source may be of interest to the user at the destination, we also propose a recovery module which can be invoked to recover attribute data already shed. The recovery module maintains the minimal amount of information about data already shed for recovery purpose. Preliminary experimental results have shown that recovery accuracy ranges from 90% to 99%, which requires only 5% to 33% and 4.88% to 50% of the dropped data to be stored for weather reports and stock exchanges, respectively. Storing of recovery information imposes storage and processing burden on the source site, and our recovery method aims at satisfactory recovery accuracy while imposing minimal burden on the source site. Our load shedding approach, which achieves a high performance in reducing the data stream load, (i) handles wide range of data streams in different application domains (such as weather, stocks, and network performance, etc.), (ii) is dynamic in nature, which means that the load shedding scheme adjusts the amount of data to be shed and which attribute data to be shed according to the current load and network capacity, and (iii) provides a data recovery mechanism that is capable to recover any shedded attribute data with recovery accuracy up to 90% with very low burden on the source site and 99% with a higher burden on some stream data. To the best of our knowledge, the dynamic load shedding scheme we propose is the first one in the literature to shed attributes, instead of tuples, along with providing a recovery mechanism in a data stream management system. Our load shedding approach is unique since it is not a static load shedding schema, which is less appealing in an ever-changing (sensor) network environment, and is not based on queries, but works on the general characteristics of the data stream under consideration instead.
50

Étude du couplage aéro-mécanique au sein des moteurs à propergol solide / Aero-mechanical coupling inside solid propellant rocket motors

Cerqueira, Stéphane 23 March 2012 (has links)
Les Moteurs à Propergol Solide sont le siège d'instabilités de combustion qui se manifestent par des fluctuations de la pression interne et, en conséquence, de la poussée induite. Les phénomènes oscillatoires observés résultent d'un couplage entre l'acoustique de la chambre de combustion et une ou plusieurs instabilités hydrodynamiques de l'écoulement interne.Dans cette thèse, on s'intéresse à l'étude de l'écoulement induit par injection pariétale en géométrie axisymétrique. Plus particulièrement, on se concentre sur l'interaction qui peut avoir lieu entre cet écoulement et une structure : les Protections Thermiques de Face.Une étude expérimentale reposant sur le montage gaz froid VALDO de l'ONERA, modélisation représentative des MPS P230, a permis d'examiner l'influence d'obstacles, rigides et en élastomère, sur les instationnarités de l'écoulement. Le caractère instable de l'écoulement induit par injection pariétale est alors confirmé et le rôle primordial joué par les PTF sur les fréquences émergeant au sein de l'écoulement a été identifié.L'analyse de stabilité linéaire de l'écoulement, conduite en approche globale, permet l'étude de sa dynamique en tant qu'amplificateur de bruit. Les m¶mécanismes mis en jeu dans l'instabilité de l'écoulement induit par injection pariétale ainsi que son interaction complexe avec la couche de cisaillement issue de l'obstacle sont analysés. La réponse de l'écoulement à un forçage harmonique est alors examinée à la lumière des résultats expérimentaux.Cette étude a été complétée par une approche numérique de l'Interaction Fluide-Structure sur une configuration jugée critique. Une étape préliminaire à la simulation multi-physique est l'élaboration d'un modèle réaliste du comportement des PTF en élastomère. L'identification et la prise en considération des mécanismes propres aux élastomères dans la loi de comportement est ainsi détaillée. Les résultats issus des simulations sont confrontés aux résultats expérimentaux et rendent possible la validation d'un scénario de couplage dédié à l'Interaction Fluide-Structure au sein des MPS. / Fluid Structure Interaction of an inhibitor with the internal flow induced by wall injection was studied in an axisymmetric cold flow apparatus. Experiments were carried out over a wide range of injection velocities in order to underline how the obstacle not only modifies the mean flowfield but also its entire dynamic behaviour.The resulting instability (from the interaction of the unstable shear layer with the Taylor-Culick flow) exhibits a significant shift with respect to the Taylor-Culick instability and therefore emphasizes the strong impact of the inhibitor on hydrodynamics.The mecanisms responsible of such behaviour are studied in this thesis with the help of global linear stability analysis and multi-physics numerical computations.

Page generated in 0.0787 seconds