Spelling suggestions: "subject:"shear""
361 |
Effect of modeled pre-industrial Greenland ice sheet surface mass balance bias on uncertainty in sea level rise projections in 2100Gutowski, Gail Ruth 21 November 2013 (has links)
Changes to ice sheet surface mass balance (SMB) are going to play a significant role in future sea level rise (SLR), particularly for the Greenland ice sheet. The Coupled Model Intercomparison Project Phase 5 (CMIP5) found that Greenland ice sheet (GIS) response to changes in SMB is expected to contribute 9 ± 4 cm to sea level by 2100 (Fettweis et al 2013), though other estimates suggest the possibility of an even larger response.
Modern ice sheet geometry and surface velocities are common metrics for determining a model’s predictability of future climate. However, care must be taken to robustly quantify prediction uncertainty because errors in boundary conditions such as SMB can be compensated by (and therefore practically inseparable from) errors in other aspects of the model, complicating calculations of total uncertainty.
We find that SMB calculated using the Community Earth System Model (CESM) differs from established standards due to errors in the CESM SMB boundary condition. During the long ice sheet initialization process, small SMB errors such as these have an opportunity to amplify into larger uncertainties in GIS sensitivity to climate change. These uncertainties manifest themselves in ice sheet surface geometry changes, ice mass loss, and subsequent SLR.
While any bias in SMB is not desirable, it is not yet clear how sensitive SLR projections are to boundary condition forcing errors. We explore several levels of SMB forcing bias in order to analyze their influence on future SLR. We evaluate ensembles of ice sheets forced by 4 different levels of SMB forcing error, covering a range of errors similar to SMB biases between CESM and RACMO SMB.
We find that GIS SMB biases on the order of 1 m/yr result in 7.8 ± 3.4 cm SLR between 1850 and 2100, corresponding to 100% uncertainty at the 2σ level. However, we find unexpected feedbacks between SMB and surface geometry in the northern GIS. We propose that the use of elevation classes may be incorrectly altering the feedback mechanisms in that part of the ice sheet. / text
|
362 |
On the hydraulic bulge testing of thin sheetsMersch, John Philip 25 March 2014 (has links)
The bulge test is a commonly used experiment to establish the material stress-strain response at the highest possible strain levels. It consists of a metal sheet placed in a die with a circular opening. It is clamped in place and inflated with hydraulic pressure. In this thesis, a bulge testing apparatus was designed, fabricated, calibrated and used to measure the stress-strain response of an aluminum sheet metal and establish its onset of failure. The custom design incorporates a draw-bead for clamping the plate. A closed loop controlled servohydraulic pressurization system consisting of a pressure booster is used to pressurize the specimens. Deformations of the bulge are monitored with a 3D digital image correlation (DIC) system. Bulging experiments on 0.040 in thick Al-2024-T3 sheets were successfully performed. The 3D nature of the DIC enables simultaneous estimates of local strains as well as the local radius of curvature. The successful performance of the tests required careful design of the draw-bead clamping arrangement.
Experiments on four plates are presented, three of which burst in the test section as expected. Finite deformation isotropic plasticity was used to extract the true equivalent stress-strain responses from each specimen. The bulge test results correlated well with the uniaxial results as they tended to fall between tensile test results in the rolling and transverse directions. The bulge tests results extended the stress-strain response to strain levels of the order of 40%, as opposed to failure strains of the order of 10% for the tensile tests.
Three-dimensional shell and solid models were used to investigate the onset of localization that precedes failure. In both models, the calculated pressure-deformation responses were found to be in reasonable agreement with the measured ones. The solid element model was shown to better capture the localization and its evolution. The corresponding pressure maximum was shown to be imperfection sensitive. / text
|
363 |
All-Optical 4D In Vivo Monitoring And Manipulation Of Zebrafish Cardiac ConductionWeber, Michael 19 May 2015 (has links) (PDF)
The cardiac conduction system is vital for the initiation and maintenance of the heartbeat. Over the recent years, the zebrafish (Danio rerio) has emerged as a promising model organism to study this specialized system. The embryonic zebrafish heart’s unique accessibility for light microscopy has put it in the focus of many cardiac researchers.
However, imaging cardiac conduction in vivo remained a challenge. Typically, hearts had to be removed from the animal to make them accessible for fluorescent dyes and electrophysiology. Furthermore, no technique provided enough spatial and temporal resolution to study the importance of individual cells in the myocardial network.
With the advent of light sheet microscopy, better camera technology, new fluorescent reporters and advanced image analysis tools, all-optical in vivo mapping of cardiac conduction is now within reach. In the course of this thesis, I developed new methods to image and manipulate cardiac conduction in 4D with cellular resolution in the unperturbed zebrafish heart.
Using my newly developed methods, I could detect the first calcium sparks and reveal the onset of cardiac automaticity in the early heart tube. Furthermore, I could visualize the 4D cardiac conduction pattern in the embryonic heart and use it to study component-specific calcium transients. In addition, I could test the robustness of embryonic cardiac conduction under aggravated conditions, and found new evidence for the presence of an early ventricular pacemaker system. My results lay the foundation for novel, non-invasive in vivo studies of cardiac function and performance.
|
364 |
Svenska dietister ställer diagnos : Nutritionsdiagnoser en del av nutritionsbehandlingsprocessen, en kvantitativ studie ur ett dietistperspektiv / Swedish dietitians sets diagnosis : Nutrition diagnosis a part of the Nutrition Care Process, a quantitative study from a dietitian perspectiveBergman, Anna, Gustafsson, Camilla January 2015 (has links)
Bakgrund NCP är en systematisk, problemlösande metod med ett unikt standardiserat språk som används av yrkesverksamma dietister för dokumentation. Det bidrar till att dietisten agerar utifrån ett kritiskt tänkande där besluten för att hantera patientens nutritionsproblem sker utifrån kunskap av evidensbaserad erfarenhet. Dietisternas Riksförbund (DRF) uppmanar legitimerade dietister att arbeta enligt NCP. Syfte Studiens syfte var att studera svenska dietisters arbete med att ställa nutritionsdiagnoser enligt NCP. Metod En webbaserad enkät utformades. Yrkesverksamma dietister rekryterades via det sociala mediet Facebook samt via DRF:s hemsida. Insamlad data bearbetades i SPSS Statistics 22, och analyserades med Chi-2-test och Correlate Bivariate Spearman. Signifikansnivån bestämdes till p-värde < 0.05. Resultat 119 dietister deltog i studien varav 103 (87 %) skrev nutritionsdiagnoser. I genomsnitt hade dietisterna arbetat i 2 år (1-3 år) med NCP, och över hälften arbetade inom akutsjukvård. Analysen visade att det fanns ett samband mellan antal år dietisterna arbetat med NCP och hur många nutritionsdiagnoser de skrev (r=-0.197, p=0.046). Ett samband visades även mellan tiden dietisterna arbetat med NCP och tiden det tog att skriva nutritionsdiagnoser (r=-0.226, p=0.022). Av de 103 dietisterna som använde NCP ansåg 60 % att deras kunskap och erfarenhet kunde förbättras, 89 % tyckte att nutritionsdiagnoser var användbara. Engelskan i referensbladen tyckte 48 % till viss del var svårtolkad och (n=13) angav att översättning till svenska kunde underlätta arbetet. Det framgick att mer än hälften (53 %) av dietisterna ibland utformade PES-meningar utan att ha funnit passande tecken/symtom i referensbladet. Slutsats Svenska dietister önskar mer kunskap och utbildning i NCP och översättning av referensbladen till svenska skulle sannolikt kunna öka användandet av nutritionsdiagnoser. En vidare implementering av NCP i Sverige behövs. / Background The Nutrition care process is a systematic, problem-solving approach with a standardized language used by dietitians for documentation. It stimulates dietitians to critically appraise and take evidence-based decisions on a patient's nutritional problems. The Swedish Association of Clinical Dietitians (DRF) appeals qualified dietitians to work according the NCP. Objective The aim was to study Swedish dietitians’ work with nutrition diagnosis according to the NCP. Method(s) A web-based questionnaire was developed. Dietitians was recruited through the social media Facebook and the DRF website. The collected data were processed in SPSS, analyzed by Chi-2-test and Correlate Bivariate Spearman, with significance level at p < 0.05. Results A total of 119 dietitians responded to the questionnaire and 103 (87 %) of the respondents wrote nutrition diagnosis. The respondents had on average worked with the NCP for 2 years (range 1-3 years), and over half worked in hospitals. There was a correlation between years working according to the NCP and the number of written diagnosis (r=-0.197, p=0.046). Also, the time for writing a nutritional diagnosis was reduced as the experience of working with NCP increased (r=-0.226, p=0.022). It was 60 % that thought their knowledge and experience in NCP could be improved, 89 % stated that the NCP was useful. The English in the reference sheets 48 % of the respondents said partly was difficult to understand and (n=13) wanted them to be translated into Swedish. It showed that more than half (53 %) of the dietitians sometimes composed PES-statements without finding the appropriate signs/symptoms in the reference sheet. Conclusion Swedish dietitians consider themselves to be in need of more knowledge and training in the NCP, and translations of the reference sheets would possibly increase the use of nutrition diagnosis. A further implementation of the NCP is needed in Sweden.
|
365 |
Mechanical Regulation of Epithelial Cell Collective MigrationNg, Mei Rosa January 2012 (has links)
Cell migration is a fundamental biological process involved in tissue development, wound repair, and diseases such as cancer metastasis. It is a biomechanical process involving the adhesion of a cell to a substratum, usually an elastic extracellular matrix, as well as the physical contraction of the cell driven by intracellular actomyosin network. In the migration of cells as a group, known as collective migration, the cells are also physically linked to one another through cell-cell adhesions. How mechanical interactions with cell substratum and with neighboring cells regulate movements during collective migration, nevertheless, is poorly understood. To address this question, the effects of substrate stiffness on sheet migration of MCF10A epithelial cells were systematically analyzed. Speed, persistence, directionality and coordination of individual cells within the migrating sheet were all found to increase with substrate stiffening. Substrate stiffening also enhanced the propagation of coordinated movement from the sheet edge into the monolayer, which correlated with an upregulation of myosin-II activity in sheet edge cells. This mechano-response was dependent on cadherin-mediated cell-cell adhesions, which are required for the transmission of directional cue. Importantly, myosin-II contractility modulated cadherin- dependent cell-cell coordination, suggesting that contractile forces at cadherin adhesions regulate collective migration. To measure forces transmitted through cell-cell adhesions, a quantitative approach was developed in which cell-cell forces were deduced from cell-substrate traction forces, based on force balance principles and simple cell mechanics modeling. This method enabled the analysis of cell-cell mechanical interactions in small cell clusters of complex topology. The dynamic fluctuations of cell-cell forces over time revealed that force transmission between non-adjacent cells is typically limited, but is enhanced when the cell across which forces are being transmitted has reduced myosin-IIA or talin-1. This suggests that cells in a group may differentially regulate their levels of myosin-II contractility and cell-matrix mechanotransduction to promote longer-range force transmission during collective migration. Together, the results in this dissertation led to a working model of collective cell migration as regulated by cell-matrix mechanical properties and cell-cell mechanical interactions. This model, as well as the quantitative techniques developed here, will drive future studies on the mechanisms underlying collective migration.
|
366 |
On Sea Level - Ice Sheet InteractionsGomez, Natalya Alissa 25 February 2014 (has links)
This thesis focuses on the physics of static sea-level changes following variations in the distribution of grounded ice and the influence of these changes on the stability and dynamics of marine ice sheets. Gravitational, deformational and rotational effects associated with changes in grounded ice mass lead to markedly non-uniform spatial patterns of sea-level change. I outline a revised theory for computing post-glacial sea-level predictions and discuss the dominant physical effects that contribute to the patterns of sea-level change associated with surface loading on different timescales. I show, in particular, that a large sea-level fall (rise) occurs in the vicinity of a retreating (advancing) ice sheet on both short and long timescales. I also present an application of the sea-level theory in which I predict the sea-level changes associated with a new model of North American ice sheet evolution and consider the implications of the results for efforts to establish the sources of Meltwater Pulse 1A. These results demonstrate that viscous deformational effects can influence the amplitude of sea-level changes observed at far-field sea-level sites, even when the time window being considered is relatively short (≤ 500 years). / Earth and Planetary Sciences
|
367 |
Methods to achieve wavelength selectivity in infrared microbolometers and reduced thermal mass microbolometersJung, Joo-Yun, 1976- 02 February 2011 (has links)
The use of a patterned resistive sheet as an infrared-selective absorber, including the effects of a mechanical support dielectric layer is discussed. Also, modified dielectric coated Salisbury Screen can improve both the wavelength selectivity and the speed of thermal response for microbolometers. These patterned resistive sheets and Modified dielectric coated Salisbury Screen are a modified form of classical Salisbury Screens that utilize a resistive absorber layer placed a quarter-wavelength in front of a mirror. These structures can show a narrower detection bandwidth when compared to conventional microbolometers. For a Modified dielectric coated Salisbury Screen for multi-spectral system, wavelength selectivity can be varied by changing the distance to the mirror, and for patterned resistive sheet, wavelength selectivity can be varied by changing the lithographically drawn parameters of the array. Hence, different pixels in a focal plane array can be designed to produce a “multi-color” infrared imaging system. Also, the thermal mass of microbolometer is reduced using patterned resistive structure. / text
|
368 |
Membrane Distillation: Parametric Studies and Numerical Simulations for Hollow Fiber and Flat Sheet MembranesKaranikola, Vasiliki January 2015 (has links)
Water scarcity is among the most serious, long-term challenges in the world. To an ever increasing degree, sustainable water supply depends on the utilization of water of impaired initial quality. This is particularly true in developing nations and in water-stressed areas such as the American Southwest. Water of impaired quality could be water of high salinity such as brackish groundwater. Traditionally, reverse osmosis (RO) would be chosen to desalinate the brackish groundwater, since RO costs are competitive with those of thermal desalination, even for seawater applications. However, both conventional thermal distillation and RO are energy intensive, complex processes that discourage decentralized or rural implementation. In addition, both technologies require enhanced expertise for operation and maintenance, and are susceptible to scaling and fouling unless extensive feed pretreatment is employed. Membrane distillation (MD), driven by vapor pressure gradients, can potentially overcome many of these drawbacks. MD can operate using low-grade, sub-boiling temperature heat sources. When it is driven by solar energy it does not require highly concentrating collection devices, non-aqueous working fluids, or complex temperature control systems, nor does it require extensive operational expertise. Membrane Distillation (MD) applications, background and modeling efforts are discussed in the first part of this dissertation. Two main studies are presented in this document: Firstly, Sweeping Gas Membrane Distillation (SGMD) through a hollow fiber membrane was studied both experimentally and modeled mathematically to describe performance of SGMD and extend results to predict membrane module efficiency and secondly, SGMD through a flat sheet MD module to study the effect of membrane characteristics in combination with operational variables. A final study was conducted to examine the effect of mesh spacer insertion in flat sheet membrane module on the permeate water production.
|
369 |
Superresolution Nonlinear Structured Illumination Microscopy By Stimulated Emission DepletionZhang, Han January 2014 (has links)
The understanding of the biological processes at the cellular and subcellular level requires the ability to directly visualize them. Fluorescence microscopy played a key role in biomedical imaging because of its high sensitivity and specificity. However, traditional fluorescence microscopy has a limited resolution due to optical diffraction. In recent years, various approaches have been developed to overcome the diffraction limit. Among these techniques, nonlinear structured illumination microscopy (SIM) has been demonstrated a fast and full field superresolution imaging tool, such as Saturated-SIM and Photoswitching-SIM. In this dissertation, I report a new approach that applies nonlinear structured illumination by combining a uniform excitation field and a patterned stimulated emission depletion (STED) field. The nature of STED effect allows fast switching response, negligible stochastic noise during switching, low shot noise and theoretical unlimited resolution, which predicts STED-SIM to be a better nonlinear SIM. After the algorithm development and the feasibility study by simulation, the STED-SIM microscope was tested on fluorescent beads samples and achieved full field imaging over 1 x 10 micron square at the speed of 2s/frame with 4-fold improved resolution. Our STED-SIM technique has been applied on biological samples and superresolution images with tubulin of U2OS cells and granules of neuron cells have been obtained. In this dissertation, an effort to apply a field enhancement mechanism, surface plasmon resonance (SPR), to nonlinear STED-SIM has been made and around 8 time enhancement on STED quenching effect was achieved. Based on this enhancement on STED, 1D SPR enhanced STED-SIM was built and 50 nm resolution of fluorescence beads sample was achieved. Algorithm improvement is required to achieve full field superresolution imaging with SPR enhanced STED-SIM. The application of nonlinear structured illumination in two photon light-sheet microscopy is also studied in this dissertation. Fluorescent cellular imaging of deep internal organs is highly challenging because of the tissue scattering. By combining two photon Bessel beam light-sheet microscopy and nonlinear SIM, 3D live sample imaging at cellular resolution in depth beyond 200 microns has been achieved on live zebrafish. Two-color imaging of pronephric glomeruli and vasculature of zebrafish kidney, whose cellular structures located at the center of the fish body are revealed in high clarity.
|
370 |
Development of a test method for measuring galling resistanceW. Lindvall, Fredrik January 2007 (has links)
Abstract Today sheet metal forming is used to make a variety of mass production because it has a high production rate. One of the biggest concerns in sheet metal forming is wear of the tool in form of galling. Galling in sheet metal forming is characterised by an increased tool surface roughness, unstable friction in the forming process and undesirable scratches on the final products. Several ways of ranking materials resistance to galling exist today but only ASM G98 is standardised. Nevertheless, some different methods developed for ranking tool materials’ tendency to galling have also been developed. The aim of this thesis is to develop and improve the Uddeholm Tooling Tribo Test rig located at Uddeholm Tooling AB. The rig, which is a variation of cylinder-on-cylinder test equipment, was improved with a new tool holder, a utilization of the real sheet material counter face and a new data acquisition system and software. The galling was detected using scratches on the sheet, metallographic analysis of the material adhered on the tool specimen, monitoring of coefficient of friction and the standard deviation of the coefficient of friction. The obtained results show difficulties with ranking of tool materials in terms of galling resistance under non-lubricated conditions. The tool steels tested were SVERKER21 and UNIMAX. AISI304-10, DC04 and DOCOL1000DP sheets were used. Additionally a low friction coating of BalinitC on SVERKER21 was also included. All specimens of the tool steels showed signs of galling on every run, only the low friction coating showed a transition in behaviour of friction coefficient corresponding to galling initiation. The standard deviation of the coefficient of friction increased at low loads. A decrease of the test loads led to stability loss of the system detected by an increase in the standard deviation of the coefficient of friction. This might happen because the Kistler platform is originally designed for larger loads. Although, the test rig does not work properly in its present state, the concept looks promising.
|
Page generated in 0.0448 seconds