Spelling suggestions: "subject:"shell margin"" "subject:"shear margin""
1 |
Cement reefsEdwards, David Charles January 1990 (has links)
No description available.
|
2 |
Late Quaternary seismic stratigraphy and structure of the western insular shelf margin of Puerto RicoHanzlík-Valentín, Martín 15 May 2015 (has links)
The modern insular shelf and slope of western Puerto Rico is characterized by reef carbonate and siliciclastic sedimentary environments controlled by the complex interplay of tectonic arching and faulting, vigorous erosion of the elevated island of Puerto Rico, fluvial incision and sedimentation pulses, reef growth, and rapid late Quaternary eustatic sea-level changes. For this study, I interpret 725 km of high-resolution, single-channel seismic lines that were collected over the western insular shelf and slope by the RV Isla Magueyes in 2000 to better understand tectonic, erosional, and eustatic controls on late Quaternary history. The seafloor geology of the western shelf and slope area of Puerto Rico has been well studied and mapped mainly from grab and short cores collected by geoscientists at the U.S. Geological Survey and at the University of Puerto Rico at Mayagü̈ez. Because of low tectonic uplift rates from the western coast of Puerto Rico, the onland late Quaternary sedimentary history is not recorded in Quaternary coastal outcrops. The results of my seismic interpretation and correlation with multi-channel seismic data collected in 1972, reveal four main units defined by characteristic stratal reflection terminations and seismic facies. These units include: Unit 1 (basement) - a gently folded and faulted basal section correlated to the Oligocene-early Pleistocene carbonate shelf of Puerto Rico; deeper penetration, industry multi-channel seismic lines show that these rocks are deformed in a broad east-west-trending arch; Unit 2 (lowstand systems tract, LST) - chaotic channel fill deposits filling deep (~ 30 meter) incisions formed during the Last Glacial Maximum about 20 ka; Unit 3 (transgressive system tract, TST) - poorly stratified deposits truncating the top of Unit 2 and deposited during early Holocene transgression of the shelf margin; Unit 4 (highstand system tract, HST) - late Holocene, highly stratified deposits related to aggradation as the Holocene transgression began to slow. The base of unit 4 is a downlap surface interpreted as a maximum flooding surface likely formed about 8 ka. East-northeast-striking faults are observed that offset the late Quaternary units in three separate zones off the west coast of Puerto Rico. Because of a lack of wells and long cores from the shelf and slope area, age estimates for the four units are based on correlations with sea-level curves derived from dated coral samples in the Caribbean and western Atlantic region. All four units are deformed by faulting that should be considered active and possibly hazardous for the rapidly developing west coast of Puerto Rico. In one area, a large, late Holocene-slump (~ 0.016 km³) is mapped using seismic, sidescan sonar and bathymetric data. Onland continuations of these faults are likely, but have not been identified due to cultural overprint of natural scarps on late Quaternary floodplains. / text
|
3 |
Late Quaternary Louisiana Shelf-Margin Deltaic Deposition, North-Central Gulf of MexicoMobley, Casey 20 May 2005 (has links)
This study aims to establish a depositional framework for an area of the Louisiana shelf, north-central Gulf of Mexico. The depositional history of the study area is poorly understood, especially within the last cycle of major eustatic fluctuation (~18, 000 yrs BP – present). Data sets used in this study include pre-existing and previously unanalyzed two-dimensional, highresolution seismic profile records (Acadiana 86 and Acadiana 89), geotechnical foundation boring data (Coleman and Roberts, 1988a), and an industry lease block survey report (Cole, 1983). Seismic sequence stratigraphic methods are employed in this study to analyze seismic profile data. Seismic sequence analysis results indicate the presence of five unconformable surfaces and five seismic facies units. Through correlation of seismic profile data with lithologic and chronologic data, it is possible to conclude that these seismic facies units represent shelf-margin deltaic deposition during the last lowstand of sea level (~18, 000 yrs BP), sourced by the Pearl River. .
|
4 |
Stratigraphic implications of the spatial and temporal variability in sediment transport in rivers, deltas and shelf marginsPetter, Andrew Lucas, 1980- 29 September 2010 (has links)
Sediment delivery to a basin exerts a first-order control over sedimentation, and therefore study of sedimentary rocks can reveal information about the nature of sediment delivery in the past. This dissertation examines several aspects of this problem using experimental, outcrop, and subsurface data. Flume experiments were undertaken to test the combined effects of autogenic alluvial aggradation and forced regression on the development of fluviodeltaic stratigraphy. Alluvial aggradation occurred in response to steady relative sea-level fall, and eventually consumed the entire sediment budget as the river lengthened in response to forced regression. The Campanian Lower Castlegate Sandstone (Utah) was studied as a potential ancient analog resulting from similar autogenic behaviors as observed in the experiments. Extensive measurement of grain-size distributions and paleo-flow depths from outcrop were utilized to explore downstream changes in paleo-hydraulics of the ancient fluvial systems in the Lower Castlegate in response to extensive alluvial aggradation and consequent loss of sediment from transport. An interesting finding was the stratigraphic signature of backwater hydraulic conditions in the distal reaches of the Lower Castlegate paleo-rivers. Finally, a simple and novel inversion scheme was developed for estimating paleo-sediment flux from ancient shelf-margin successions. An advantage of the methodology is that it allows for both spatial and temporal reconstruction of paleo-sediment flux patterns. The inversion scheme was applied to shelf-margin successions in the Washakie-Sand Wash Basin of Wyoming, the New Jersey Atlantic margin, the North Slope of Alaska, and the Zambezi margin of East Africa using published subsurface datasets. The Neogene passive margins within the studied datasets were found to consistently deposit around one-third of their total sediment budget on the shelf-margin topset, and bypass two-thirds of their budget beyond the shelf edge. The implications of this finding on the flux of terrestrial-derived particulate organic carbon (POC) from rivers to the ocean were explored, and a long-term average flux of POC to deepwater storage was estimated. The sediment-flux inversion scheme was also applied to derive input parameters for stratigraphic modeling of the Ebro margin. The modeling results indicate that the autostratigraphic behavior of the margin may have been previously underestimated. / text
|
5 |
Integrated lidar and outcrop study of syndepositional faults and fractures in the Capitan Formation, Gaudalupe Mountains, New Mexico, U.S.A.Jones, Nathaniel Baird 01 November 2013 (has links)
An appreciation of the extent of syndepositional fracturing, faulting, and
cementation of carbonate platform margins is essential to understanding the role of early
diagenesis and compaction in margin deformation. This study uses integrated lidar and
outcrop data along the Capitan Reef from an area encompassing the mouths of both
Rattlesnake and Walnut Canyons. Mapping geomorphic expressions of syndepositional
faults and fractures at multiple scales of observation was the main approach to
delineating zones of syndepositional fractures. Ridge- groove couplets visible in
exposures of the Capitan Reef throughout the Guadalupe Mountains were targeted
because the ability to identify these as signs of syndepositional fracture development
would have implications for the entire reef complex. Results show that these ridgegroove
couplets are the product of differential weathering of syndepositional as well as
burial-related fractures. Recessive grooves have an average syndepositional fracture
spacing of ~13 m whereas ridges have a spacing of ~33 m.
vi
Smaller (~5-20 m-wide) scale erosional lineaments common in the study area and
mappable on airborne lidar are formed by differential erosion of planes of
syndepositional faults. Maps of these fault lineaments on the lidar show that
syndepositional faults extend laterally for 300 m - 2000 m and relay near the terminations
of the faults at each end. Faults can be further grouped into fault systems consisting of
sets of faults connected by fault relays that extend for at least the entire length (~12 km)
of the study area. Although vertical displacement along faults is typically less than 11 m,
syndepositional faults result in changes in structural dip domain of 1-6 degrees across an
individual fault.
Even smaller erosional lineaments (10 cm-1 m) are visible on the airborne lidar
that form as a result of differential erosion of individual fractures. Larger fractures (> 20
cm) can be reliably mapped on the lidar, but smaller features (< 20 cm) cannot be reliably
mapped with currently available data and can only be captured using field studies.
Fracture fill types are heterogeneous along strike as shown by comparisons of field study
locations. Siliciclastic-dominated fills are likely sourced from overlying siliciclastic units
of the shelf, which, in this area, were from the Ocotillo Siltstone. These silt-filled
fractures are broadly distributed, indicating preferential development and infill of
syndepositional fractures during the deposition of the Ocotillo Siltstone in the G27/28
high-frequency sequences. Development of early fractures is also shown to have been
influenced by mechanical stratigraphy with changes in fracture spacing between massive
to thick-bedded shelf-margin (~17 m fracture spacing) and outer-shelf facies tracts versus
thin-bedded outer-shelf and shelf-crest (~28 m fracture spacing).
Ultimately, this study demonstrated that the Capitan shelf margin was
ubiquitously overprinted by syndepositional fracturing and faulting and that this nearsurface
structural modification influenced early diagenetic patterns and internal
vii
sedimentation throughout the reef margin. Before this study, the extent and nature of
syndepositional fracture/fault development within the margin were largely unquantified.
Here, by integrating field observations and surface weathering reflections of these
fractures as observed in the lidar, we can demonstrate a widespread impact of early
fracturing more akin to analogous early-lithified margins such as the Devonian of the
Canning Basin of Australia. / text
|
6 |
Controls on sedimentary processes and 3D stratigraphic architecture of a mid-Miocene to recent, mixed carbonate-siliciclastic continental margin : northwest shelf of AustraliaSanchez, Carla Maria, 1978- 11 July 2012 (has links)
Determining the relative importance of processes that control the generation and preservation of continental margin stratigraphy is fundamental to deciphering the history of geologic, climatic and oceanographic forcing imprinted on their sedimentary record. The Northern Carnarvon Basin (NCB) of the North West Shelf of Australia has been a site of passive margin sedimentation throughout the Neogene. Cool-water carbonate sedimentation dominated during the early-middle Miocene, quartz-rich siliciclastics prograded over the shelf during the late-middle Miocene, and carbonate sedimentation resumed in the Pliocene. Middle Miocene to Pliocene siliciclastics were deposited as clinoform sets interpreted as delta lobes primarily based on their plan-view morphology and their relief of 40-100 m. Shelf-edge trajectory analysis suggests that part of this stratigraphic succession was built during a long-term, third order, regressive phase, producing shelf-edge deltas, followed by an aggradational episode. These trends appear to correlate with third-order global eustatic cycles. Slope incisions were already conspicuous on the slope before deltas reached the shelf-break. Nevertheless, slope gullies immediately downdip from the shelf-edge deltas are wider and deeper (>1 km wide, ~100 m deep) than coeval incisions that are laterally displaced from the deltaic depocenter (~0.7 km wide, ~25 m deep). This change in gully morphology is likely the result of greater erosion by sediment gravity flows sourced from shelf-edge deltas. Total late-middle to late Miocene margin progradation increased almost three times from 13 km in the southwest to 34 km in the northeast, where shelf-edge deltas were concentrated.
Flat-topped carbonate platforms seem to have initiated on subtle antecedent topographic highs resulting from these deltaic lobes. A reduction of siliciclastic supply to the outer paleo-shelf during the Pliocene combined with the onset of a southwestward-flowing, warm-water Leeuwin Current (LC) most likely controlled the initiation of these carbonate platforms. These platforms display marked asymmetry, likely caused by an ancestral LC, which created higher-angle, upcurrent platform margins, and lower-angle, downcurrent clinoforms. The along-strike long-term migration trend of the platforms could be the result of differential subsidence. These platforms constitute the first widespread accumulation of photozoan carbonates in the Northern Carnarvon Basin. They became extinct after the mid-Pleistocene when the LC weakened or became more seasonal. / text
|
7 |
Processes and controls on shelf margin accretion and degradation : Karoo Basin, South AfricaGomis Cartesio, Luz January 2018 (has links)
The interaction of numerous sedimentary processes at key transition points along the depositional profile results in a complex heterogeneity in ancient basin margin successions. This complexity is generally well studied along depositional dip sections, but lateral (strike) variability and consequent implications for sediment distribution and stratigraphic architecture is commonly less well constrained. In the Karoo Basin, continuous NW-SE-oriented exposure over 80 km has been characterized by 53 logs with 9910 m of cumulative thickness, >2500 palaeocurrent measurements, and ground-, drone- and helicopter-based photo panels. Palaeoflow indicators suggest dominant sediment transport was to the N-NE, with E-W and NE-SW bidirectional components. These are consistent with a strike orientation of the outcrop belt relative to the NE-N margin progradation direction and a NE-SW reworking by waves orientation. In the south of the study area, upper slope and shelf edge parasequences (50-75 m-thick), show current ripples and inverse-to-normal grading in micaceous and organic-rich siltstones and sandstones. They are interpreted as river-dominated prodelta and mouth bar deposits, locally incised by distributary channels (100 m-thick, 1.5 km-wide). Overlying shelf parasequences are thinner (15-50 m) with symmetrical ripple tops, HCS and low angle cross bedding, interpreted as wave-influenced deltaic or shoreface deposits. They transition upward into erosive-based, fining-up sandstones and isolated sharp-based tabular climbing-rippled sandstones, interpreted as channels and crevasse splays within delta plain mudstones. Along strike to the north, upper slope parasequences show more wave reworking indicators and no evidence of gullying or incision. Overlying shelf parasequences are sandier, more amalgamated and strongly influenced by wave action. They are interpreted as offshore, shoreface, foreshore and strandplain deposits. Southern nearshore environments were therefore more river-dominated with bypass and sediment delivery to deeper parts of the basin across a steep, more erosive margin. Wave and storm current redistribution along strike to the northern, lower gradient margin resulted in higher net-to-gross and sand connectivity on a wider shelf, without major incision, bypass and sand supply to the upper slope. No evidence of major avulsions in the upstream tributary and distributary systems are interpreted because the bypass and fluvial-dominated characteristics are persistent in the southern areas through time, whereas the northern margin maintained a sand-starved upper slope and a wave dominated shelf succession. The overall thicker and delta- dominated succession in the south, and the thinner, more condensed and wave dominated stratigraphy in the north are interpreted to be controlled by a combination of basement and basin configuration and differential basin margin physiography. However, relative sea level fluctuations controlled the stacking patterns, with an overall shallowing-upward profile that can be subdivided into two prograding phases, separated by a transgressive phase. At parasequence scale, climate, autocyclicity and coastal processes influenced the equilibrium between sediment input, redistribution and compensational stacking. This study demonstrates that although basin margin successions may be consistently progradational, the interaction of mixed coastal processes and differential spatial configuration can result in a complex along-strike sedimentary architecture, with major implications for sediment distribution through time and space.
|
Page generated in 0.3448 seconds