• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Slope to basin-floor evolution of channels to lobes, Jurassic Los Molles Formation, Neuquén Basin, Argentina

Vann, Nataleigh Kristine 09 April 2014 (has links)
Abstract Slope to Basin-floor Evolution of Channels to Lobes, Jurassic Los Molles Formation, Neuquén Basin, Argentina Nataleigh Kristine Vann, MS Geo Sci The University of Texas at Austin, 2013 Supervisor: Ronald J. Steel and Cornel Olariu The relatively steep and short-headed Neuquén Basin margin provides an excellent laboratory for demonstrating down slope changes in sediment gravity flow bed thickness, grain size and facies, as well as channel to lobe transitions. Approximately 400m high clinoformal, shelf-slope-basin-floor deposits of Jurassic Los Molles Formation outcrops are evaluated for reservoir scale definition of facies and architectures in the La Jardinera field area, Neuquén Basin. Slope deposits represent the accretionary front of the prograding shelf margin that were fed by a coarse grained shelf (Lajas Formation). Mapping of a high-resolution satellite images draped on digital elevation model resolved a sub-meter stratigraphic framework. Thirty-three measured sections from outcrops exposed along a 5km transect characterize the evolution of sand body architectures from the shelf edge to the basin floor. The Neuquén Basin margin is typified by four main depositional environments that transition from shelf edge incisions filled with conglomerates, to confined channels in upper- to middle-slope reaches, to weakly confined channels on the lower slope to sheet-like lobes and distributary channel complexes that drape onto both the lower slope and basin floor. Along the slope to basin floor profile the depositional architecture changes by overall decrease in grain size, amalgamation of beds and degree of erosion. Confined slope channels are up to 25m deep, isolated within muddy slope deposits and have complex multistory fills marked by basal and internal erosive contacts lined with mud-clast and/or pebble conglomerates. Channel axes contain amalgamated, medium to coarse sandstones that thin and fine towards channel margins over 100m. Down dip, lower slope channels are up to 400m wide and less than 10m thick. A marked reduction in mud clasts and conglomeratic material at basal erosional surfaces in weakly confined channels represent a downslope decrease in flow energy. However, distinct meter scale erosion surfaces continue to be recognizable where thin ripple laminated sands are truncated on channel margins by amalgamated structureless sands. Erosional surfaces are absent in laterally extensive (>5km), sheet-like lobes of basin-floor fans that are generally finer grained than lower or upper slope channel fills. There are lenticular debrites and thin micro-conglomerates associated with basin-floor fans. / text
2

The impact of shelf margin geometry and tectonics on shelf-to-sink sediment dynamics and resultant basin fill architectures

Salazar, Migdalys Beatriz 03 July 2014 (has links)
This dissertation focuses on understanding the relative importance of external (eustacy) versus local tectonic and sedimentary processes in controlling continental-margin depositional architectures and their implications for sediment distribution. The emphasis of this study is the interpretation of clinoform geometries and stratigraphic relationships observed on 3D and 2D seismic reflection data in the Taranaki Basin, which is characterized by a variety of clinoform architectures on its Pliocene-Recent margin (Giant Foresets Formation). I combined seismic stratigraphic interpretations and biostratigraphic studies using a dataset that consists of 1,700 km2 of 3D seismic lines, 4,000 km of 2D regional seismic lines, and data from six wells. The study was divided into three sections. First, three major stages of clinoform evolution were identified based on their architectural and geomorphological characteristics. Isochron maps were generated to identify correlations between stratigraphy and paleostructures, and seismic attribute maps were elaborated to identify and characterize geological features and depositional elements. In the second phase of the study, 2D stratigraphic forward modeling techniques were applied in an effort to quantitatively determine the relative importance of the mechanisms acting in the basin (eustacy, tectonism and sediment supply). Finally, a similar approach was applied using clinoform morphologies in the eastern Trinidad margin where the tectonic configuration of the basin was completely different to the one in the Taranaki Basin. The objective was to compare the results in a region with different a tectonic setting to validate the applicability of the methodology in other basins worldwide. The results of this research indicate that the methodology that was developed for the quantitative analysis of clinoform architectures in the Taranaki Basin is applicable to other basins worldwide and that the work flow provides a more comprehensive understanding of the factors that influence continental margin development. Generic observations of this research showed that (1) underlying structures in the shelf and slope area can play an important role in influencing the location and morphology of the shelf edge area and controlling sediment distribution; (2) high sediment supply, along with accommodation, play a key role in the construction of high-relief clinoforms and earlier dispersal of sediments into deep water; and (3) lateral variations associated with high sediment discharge sources (e.g. paleo Orinoco shelf-edge delta) can generate important changes in continental-scale clinoform architectures alongstrike in continental margins influence sediment distribution patterns in the deep-water component of the basin. / text
3

Stratigraphic implications of the spatial and temporal variability in sediment transport in rivers, deltas and shelf margins

Petter, Andrew Lucas, 1980- 29 September 2010 (has links)
Sediment delivery to a basin exerts a first-order control over sedimentation, and therefore study of sedimentary rocks can reveal information about the nature of sediment delivery in the past. This dissertation examines several aspects of this problem using experimental, outcrop, and subsurface data. Flume experiments were undertaken to test the combined effects of autogenic alluvial aggradation and forced regression on the development of fluviodeltaic stratigraphy. Alluvial aggradation occurred in response to steady relative sea-level fall, and eventually consumed the entire sediment budget as the river lengthened in response to forced regression. The Campanian Lower Castlegate Sandstone (Utah) was studied as a potential ancient analog resulting from similar autogenic behaviors as observed in the experiments. Extensive measurement of grain-size distributions and paleo-flow depths from outcrop were utilized to explore downstream changes in paleo-hydraulics of the ancient fluvial systems in the Lower Castlegate in response to extensive alluvial aggradation and consequent loss of sediment from transport. An interesting finding was the stratigraphic signature of backwater hydraulic conditions in the distal reaches of the Lower Castlegate paleo-rivers. Finally, a simple and novel inversion scheme was developed for estimating paleo-sediment flux from ancient shelf-margin successions. An advantage of the methodology is that it allows for both spatial and temporal reconstruction of paleo-sediment flux patterns. The inversion scheme was applied to shelf-margin successions in the Washakie-Sand Wash Basin of Wyoming, the New Jersey Atlantic margin, the North Slope of Alaska, and the Zambezi margin of East Africa using published subsurface datasets. The Neogene passive margins within the studied datasets were found to consistently deposit around one-third of their total sediment budget on the shelf-margin topset, and bypass two-thirds of their budget beyond the shelf edge. The implications of this finding on the flux of terrestrial-derived particulate organic carbon (POC) from rivers to the ocean were explored, and a long-term average flux of POC to deepwater storage was estimated. The sediment-flux inversion scheme was also applied to derive input parameters for stratigraphic modeling of the Ebro margin. The modeling results indicate that the autostratigraphic behavior of the margin may have been previously underestimated. / text
4

Modélisation d'objets sédimentaires par des surfaces paramétriques et application à l'analyse d'image / Modeling of sedimentary structures and application to image analysis

Ruiu, Jérémy 09 June 2015 (has links)
Les réservoirs clastiques sont constitués pour la plupart d'un agencement géométrique de plusieurs structures. Le but de ces travaux est de fournir une représentation volumétrique de ces différents objets afin de pouvoir reproduire la grande hétérogénéité des dépôts sédimentaires. Nous proposons une paramétrisation tridimensionnelle compacte des objets sédimentaires qui permet de représenter des géométries variées et qui fournit un espace curvilinéaire pour la modélisation des hétérogénéités internes des structures sédimentaires. Les modèles de corps géologiques sont définis par une représentation par frontières, chacune des frontières étant construite par une surface paramétrique déformable. La formulation mathématique utilisée pour construire les espaces paramétriques sont les B-Splines rationnelles non uniformes dites NURBS (pour Non Uniform Rational B-Splines). Chaque forme élémentaire est contrôlée par des règles de déformations afin de maintenir la géométrie et la cohérence des objets durant l'édition. Les modèles de structures sédimentaires sont appliqués à la simulation de chenaux et des structures qui y sont liées telles que les barres d'accrétion latérale. Ils servent alors de support pour réaliser des simulations de propriétés pétrophysiques qui suivent l'espace paramétrique particulier de chaque objet. Les modèles d'objets sédimentaires sont également appliqués dans le cadre de l'interprétation semi-automatique d'images géologiques en adaptant des méthodes classiques d'extraction de formes. Cette approche est appliquée sur des images satellites de chenaux alluviaux. Des résultats préliminaires sur des données de sismiques 3D sont également présentés / Most clastic deposits consist in geometric arrangements of several structures. The purpose of this work is to provide a volumetric representation of these objects in order to reproduce the high heterogeneity of the sedimentary deposits. These models are constructed to be flexible and compact in order to model the sedimentary formations at different scales. The sedimentary models are defined by a boundary representation ; each boundary is defined by a deformable parametric surface. The proposed parametrization is the Non Uniform Rational B-Spline (NURBS). Each elementary shape is controlled by deformation rules and has connection constraints with associated objects, in order to maintain the geometry and the consistency through editing. Sedimentary structure models are applied to channel simulation and to the construction of the related structures such as point bars. These structures are then used as framework for petrophysical property simulations. The models are also applied to semi-automatically interpret geological images by adapting classical shape extraction methods. This approach is applied on satellite pictures showing alluvial channels and some preliminary results on 3D seismic time slices are also presented
5

high-resolution 3d stratigraphic modelling of the gresse-en-vercors lower cretaceous carbonate platform (SE france) : from digital outcrop modeling to carbonate sedimentary system characterization / Modélisation 3D haute résolution d'une marge de plate forme carbonaté : l'exemple de la falaise de Gresse-en Vercors

Richet, Rémy 19 December 2011 (has links)
Les plateformes carbonatées sont typiquement caractérisées par une architecture sédimentaire et stratigraphique complexe qui s’exprime à une échelle qui peut dépasser le simple affleurement. Ce travail est centré sur les dépôts Barrémien (Crétacé inférieur) de la falaise de Gresse-en-Vercors (sud-est de la France) qui nous procure une fenêtre d’observation à l’échelle de la sismique à travers une bordure de plateforme – analogue des réservoirs du Moyen Orient - idéale pour étudier en continu et à grande échelle le développement des plateformes carbonatées. Cette falaise de 500 m de haut pour 25 km de long permet d’étudier la transition entre les dépôts de peu profonds de la plateforme et ceux du bassin. De nouvelles données biostratigraphiques montrent que la série de plate-forme de Gesse-en-Vercors est essentiellement Barrémien inférieur. Quatre séquences stratigraphiques ont été définies, avec deux épisodes complets de plateforme, séparés par trois « drowning ». Les nouvelles données numériques hautes résolutions (nuage de points LIDAR et photos géoréférencées hautes résolutions) acquises par hélicoptère permettent la réalisation d’un DEM 3D haute résolution pour l’ensemble de l’affleurement. L’intégration des observations stratigraphiques et du DEM dans gOcad abouti à la création d’un modèle 3D en continu de l’architecture stratigraphique et de la répartition des facies de l’affleurement qui peu être utilisé pour interprétations stratigraphiques et sédimentologiques. Le modèle géologique qui en résulte démontre que les données numériques d’affleurement et la modélisation géologique en 3D sont des outils pertinents pour tester la caractérisation des affleurements carbonatés et les modèles conceptuels de système de plateformes carbonatées. Il permet d’appréhender les variations subtiles de profils sédimentaires et d’établir une mosaïque de facies à haute résolution tout au long de la plateforme à l’échelle de la sismique. Cette approche est particulièrement critique en ce qui concerne la caractérisation 3D des clinoformes et des cortèges de dépôts sédimentaires dans un modèle non cylindrique tel que la plateforme carbonaté : par exemple, un prisme de bas niveau apparent ou des lobes distaux qui « onlappent » en 2D correspondent en réalité à des progradations en contexte de haut niveau en 3D. / Carbonate platforms are characterized by complex sedimentary and stratigraphic architectures that can be expressed at length scale exceeding single outcrops. This work focuses on the Barremian (Lower Cretaceous) deposits of the Gresse-en-Vercors cliff (southeastern France) that provide a seismic-scale slice though a platform margin - analogous to Middle East reservoirs - ideal to study large scale carbonate platform developments in continuous. The cliffs are 500 m high and extend for 25 km along depositional dip, straddling the transition from shallow water platform to deeper basin. New biostratigraphical data shows that the Vercors platform is mainly Lower Barremian. Four stratigraphic sequences were defined, with two complete platform stages, separated by three drowning events.New high-resolution numerical data (LIDAR point-set and high-resolution georeferenced photos) obtained by helicopter survey, allowed the realization of a 3D high-resolution DEM over the entire outcrops. Integrating the stratigraphic observations and the DEM in gOcad result in a continuous 3D stratigraphic architecture and facies model of the carbonate outcrop that can be used for stratigraphic and sedimentological interpretations. The resulting geological model demonstrates that outcrop numerical data and 3D geological modeling are pertinent tools for improving carbonate outcrop characterization and conceptual models of carbonate platform systems. It allows to establish subtle sedimentary profiles and high resolution facies mosaic along seismic scale platform trend. This approach is particularly critical for the 3D characterization of clinoforms and stratigraphic system tracts in non-cylindrical carbonate systems: for example, apparent low stand wedge or distal onlapping lobes in 2D are in reality prograding high stand systems in 3D.
6

Modelling Submarine Landscape Evolution in Response to Subduction Processes, Northern Hikurangi Margin, New Zealand

Pedley, Katherine Louise January 2010 (has links)
The steep forearc slope along the northern sector of the obliquely convergent Hikurangi subduction zone is characteristic of non-accretionary and tectonically eroding continental margins, with reduced sediment supply in the trench relative to further south, and the presence of seamount relief on the Hikurangi Plateau. These seamounts influence the subduction process and the structurally-driven geomorphic development of the over-riding margin of the Australian Plate frontal wedge. The Poverty Indentation represents an unusual, especially challenging and therefore exciting location to investigate the tectonic and eustatic effects on this sedimentary system because of: (i) the geometry and obliquity of the subducting seamounts; (ii) the influence of multiple repeated seamount impacts; (iii) the effects of structurally-driven over-steeping and associated widespread occurrence of gravitational collapse and mass movements; and (iv) the development of a large canyon system down the axis of the indentation. High quality bathymetric and backscatter images of the Poverty Indentation submarine re-entrant across the northern part of the Hikurangi margin were obtained by scientists from the National Institute of Water and Atmospheric Research (NIWA) (Lewis, 2001) using a SIMRAD EM300 multibeam swath-mapping system, hull-mounted on NIWA’s research vessel Tangaroa. The entire accretionary slope of the re-entrant was mapped, at depths ranging from 100 to 3500 metres. The level of seafloor morphologic resolution is comparable with some of the most detailed Digital Elevation Maps (DEM) onshore. The detailed digital swath images are complemented by the availability of excellent high-quality processed multi-channel seismic reflection data, single channel high-resolution 3.5 kHz seismic reflection data, as well as core samples. Combined, these data support this study of the complex interactions of tectonic deformation with slope sedimentary processes and slope submarine geomorphic evolution at a convergent margin. The origin of the Poverty Indentation, on the inboard trench-slope at the transition from the northern to central sectors of the Hikurangi margin, is attributed to multiple seamount impacts over the last c. 2 Myr period. This has been accompanied by canyon incision, thrust fault propagation into the trench fill, and numerous large-scale gravitational collapse structures with multiple debris flow and avalanche deposits ranging in down-slope length from a few hundred metres to more than 40 km. The indentation is directly offshore of the Waipaoa River which is currently estimated to have a high sediment yield into the marine system. The indentation is recognised as the “Sink” for sediments derived from the Waipaoa River catchment, one of two target river systems chosen for the US National Science Foundation (NSF)-funded MARGINS “Source-to-Sink” initiative. The Poverty Canyon stretches 70 km from the continental shelf edge directly offshore from the Waipaoa to the trench floor, incising into the axis of the indentation. The sediment delivered to the margin from the Waipaoa catchment and elsewhere during sea-level high-stands, including the Holocene, has remained largely trapped in a large depocentre on the Poverty shelf, while during low-stand cycles, sediment bypassed the shelf to develop a prograding clinoform sequence out onto the upper slope. The formation of the indentation and the development of the upper branches of the Poverty Canyon system have led to the progressive removal of a substantial part of this prograding wedge by mass movements and gully incision. Sediment has also accumulated in the head of the Poverty Canyon and episodic mass flows contribute significantly to continued modification of the indentation by driving canyon incision and triggering instability in the adjacent slopes. Prograding clinoforms lying seaward of active faults beneath the shelf, and overlying a buried inactive thrust system beneath the upper slope, reveal a history of deformation accompanied by the creation of accommodation space. There is some more recent activity on shelf faults (i.e. Lachlan Fault) and at the transition into the lower margin, but reduced (~2 %) or no evidence of recent deformation for the majority of the upper to mid-slope. This is in contrast to current activity (approximately 24 to 47% shortening) across the lower slope and frontal wedge regions of the indentation. The middle to lower Poverty Canyon represents a structural transition zone within the indentation coincident with the indentation axis. The lower to mid-slope south of the canyon conforms more closely to a classic accretionary slope deformation style with a series of east-facing thrust-propagated asymmetric anticlines separated by early-stage slope basins. North of the canyon system, sediment starvation and seamount impact has resulted in frontal tectonic erosion associated with the development of an over-steepened lower to mid-slope margin, fault reactivation and structural inversion and over-printing. Evidence points to at least three main seamount subduction events within the Poverty Indentation, each with different margin responses: i) older substantial seamount impact that drove the first-order perturbation in the margin, since approximately ~1-2 Ma ii) subducted seamount(s) now beneath Pantin and Paritu Ridge complexes, initially impacting on the margin approximately ~0.5 Ma, and iii) incipient seamount subduction of the Puke Seamount at the current deformation front. The overall geometry and geomorphology of the wider indentation appears to conform to the geometry accompanying the structure observed in sandbox models after the seamount has passed completely through the deformation front. The main morphological features correlating with sandbox models include: i) the axial re-entrant down which the Poverty Canyon now incises; ii) the re-establishment of an accretionary wedge to the south of the indentation axis, accompanied by out-stepping, deformation front propagation into the trench fill sequence, particularly towards the mouth of the canyon; iii) the linear north margin of the indentation with respect to the more arcuate shape of the southern accretionary wedge; and, iv) the set of faults cutting obliquely across the deformation front near the mouth of the canyon. Many of the observed structural and geomorphic features of the Poverty Indentation also correlate well both with other sediment-rich convergent margins where seamount subduction is prevalent particularly the Nankai and Sumatra margins, and the sediment-starved Costa Rican margin. While submarine canyon systems are certainly present on other convergent margins undergoing seamount subduction there appears to be no other documented shelf to trench extending canyon system developing in the axis of such a re-entrant, as is dominating the Poverty Indentation. Ongoing modification of the Indentation appears to be driven by: i) continued smaller seamount impacts at the deformation front, and currently subducting beneath the mid-lower slope, ii) low and high sea-level stands accompanied by variations on sediment flux from the continental shelf, iii) over-steepening of the deformation front and mass movement, particularly from the shelf edge and upper slope.

Page generated in 0.0287 seconds