• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Detecting shift in mean and variance for both uncorrelated and correlated series using several popular tests

WANG, BO 01 December 2014 (has links)
No description available.
2

On the formulation of the alternative hypothesis for geodetic outlier detection

Lehmann, Rüdiger January 2013 (has links)
The concept of outlier detection by statistical hypothesis testing in geodesy is briefly reviewed. The performance of such tests can only be measured or optimized with respect to a proper alternative hypothesis. Firstly, we discuss the important question whether gross errors should be treated as non-random quantities or as random variables. In the first case, the alternative hypothesis must be based on the common mean shift model, while in the second case, the variance inflation model is appropriate. Secondly, we review possible formulations of alternative hypotheses (inherent, deterministic, slippage, mixture) and discuss their implications. As measures of optimality of an outlier detection, we propose the premium and protection, which are briefly reviewed. Finally, we work out a practical example: the fit of a straight line. It demonstrates the impact of the choice of an alternative hypothesis for outlier detection. / Das Konzept der Ausreißererkennung durch statistische Hypothesentests in der Geodäsie wird kurz überblickt. Die Leistungsfähigkeit solch eines Tests kann nur gemessen oder optimiert werden in Bezug auf eine geeignete Alternativhypothese. Als erstes diskutieren wir die wichtige Frage, ob grobe Fehler als nicht-zufällige oder zufällige Größen behandelt werden sollten. Im ersten Fall muss die Alternativhypothese auf das Mean-Shift-Modell gegründet werden, im zweiten Fall ist das Variance-Inflation-Modell passend. Als zweites stellen wir mögliche Formulierungen von Alternativhypothesen zusammen und diskutieren ihre Implikationen. Als Optimalitätsmaß schlagen wir das Premium-Protection-Maß vor, welches kurz überblickt wird. Schließlich arbeiten wir ein praktisches Beispiel aus: Die Anpassung einer ausgleichenden Gerade. Es zeigt die Auswirkung der Wahl einer Alternativhypothese für die Ausreißererkennung.

Page generated in 0.0753 seconds