• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Shock Fitting For Converging Cylidrical Shocks In Hydrodynamics And Ideal Magnetohydrodynamics

Arshad, Talha 07 1900 (has links)
Converging shocks have long been a topic of interest in theoretical fluid mechanics, and are of prime importance in inertial confinement fusion. However, tracking converging shocks in numerical schemes poses several challenges. Numerical schemes based on shock capturing inherently diffuse out shocks to multiple grid cells, making it hard to track the shock. Converging shocks are significantly harder to track, as this numerical smearing is much more significant when converging shocks approach the axis of convergence. To mitigate this problem, we transform the conservation laws to a non-inertial frame of reference in which the accelerating shock is stationary. A system of equations is derived based on the transformed conservation laws coupled to the shock speed obtained from jump conditions and a characteristic-based derivation of a relation governing shock acceleration. We solve these equations using a finite volume method. Our numerical results compare favorably with the analytical value of Guderley exponent for self-similarly converging cylindrical hydrodynamic shocks. Results for fast magnetosonic shock in MHD are also presented and compared with results from geometrical shock dynamics (GSD). Results from our shock fitting method, developed without any approximation to the original ideal magnetohydrodynamics equations, provide further credibility to GSD applied to converging fast magnetosonic shocks. This sort of shock fitting is a precursor to future multidimensional stability analysis of imploding shocks.
2

Méthodes compactes d’ordre élevé pour les écoulements présentant des discontinuités / High-order compact schemes for discontinuous flow field simulation

Lamouroux, Raphaël 02 December 2016 (has links)
Dans le cadre du développement récent des schémas numériques compacts d’ordre élevé, tels que la méthode de Galerkin discontinu (discontinuous Galerkin) ou la méthode des différences spectrales (spectral differences), nous nous intéressons aux difficultés liées à l’utilisation de ces méthodes lors de la simulation de solutions discontinues.L’utilisation par ces schémas numériques d’une représentation polynomiale des champs les prédisposent à fournir des solutions fortement oscillantes aux abords des discontinuités. Ces oscillations pouvant aller jusqu’à l’arrêt du processus de simulation, l’utilisation d’un dispositif numérique de détection et de contrôle de ces oscillations est alors un prérequis nécessaire au bon déroulement du calcul. Les processus de limitation les plus courants tels que les algorithmes WENO ou l’utilisation d’une viscosité artificielle ont d’ores et déjà été adaptés aux différentes méthodes compactes d’ordres élevés et ont permis d’appliquer ces méthodes à la classe des écoulements compressibles. Les différences entre les stencils utilisés par ces processus de limitation et les schémas numériques compacts peuvent néanmoins être une source importante de perte de performances. Dans cette thèse nous détaillons les concepts et le cheminement permettant d’aboutir à la définition d’un processus de limitation compact adapté à la description polynomiale des champs. Suite à une étude de configurations monodimensionnels, différentes projections polynomiales sont introduites et permettent la construction d’un processus de limitation préservant l’ordre élevé. Nous présentons ensuite l’extension de cette méthodologie à la simulation d’écoulements compressibles bidimensionnels et tridimensionnels. Nous avons en effet développé les schémas de discrétisation des différences spectrales dans un code CFD non structuré, massivement parallèle et basé historiquement sur une méthodologie volumes finis. Nous présentons en particulier différents résultats obtenus lors de la simulation de l’interaction entre une onde de choc et une couche limite turbulente. / Following the recent development of high order compact schemes such as the discontinuous Galerkin or the spectraldifferences, this thesis investigates the issues encountered with the simulation of discontinuous flows. High order compactschemes use polynomial representations which tends to introduce spurious oscillations around discontinuities that can lead to computational failure. To prevent the emergence of these numerical issues, it is necessary to improve the schemewith an additional procedure that can detect and control its behaviour in the neighbourhood of the discontinuities,usually referred to as a limiting procedure or a limiter. Most usual limiters include either the WENO procedure, TVB schemes or the use of an artificial viscosity. All of these solutions have already been adapted to high order compact schemes but none of these techniques takes a real advantage of the richness offered by the polynomial structure. What’s more, the original compactness of the scheme is generally deteriorated and losses of scalability can occur. This thesis investigates the concept of a compact limiter based on the polynomial structure of the solution. A monodimensional study allows us to define some algebraic projections that can be used as a high-order tool for the limiting procedure. The extension of this methodology is then evaluated thanks to the simulation of different 2D and 3D test cases. Those results have been obtained thanks to the development of a parallel solver which have been based on a existing unstructured finite volume CFD code. The different exposed studies detailed end up to the numerical simulation of the shock turbulent boundary layer.

Page generated in 0.0675 seconds