• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Korttidsregleringsmönster i Ångermanälvens avrinningsområde : Har elmarknadens avreglering påverkat regleringsintensiteten?

Ahonen, Jani January 2013 (has links)
The effects of the deregulation of the electricity market 1996 in Sweden on short-term hydropower regulation are unknown. This report investigates patterns in subdaily regulation in the Ångerman River Basin during the period 1993-2011. Differences in subdaily flows and zero flow events between the periods 1993-1995 and 1996-2011 were studied by analyzing hourly data from 8 regulated and 8 unregulated locations with four subdaily flow variation indices. No correlations between the market deregulation and the regulation intensity in the Ångerman River basin were detected. The number of days natural ranges of variability were exceeded and the magnitude of subdaily variation were significantly higher at regulated locations. Zero flow events increased substantially when the periods 1993-2007 and 2008-2011 were compared. Significant correlations were detected in the summer periods between dry years and high magnitudes for the indices that measured variation in volume and low magnitudes for subdaily flow reversals. Zero flow events in the summer periods increased during dry years if the period 2008-2011 were excluded. The major conclusions are that the deregulation of the electricity market has not affected the subdaily regulation of the Ångerman River and that the regulated sites show highly unnatural subdaily variations. Regulation intensity and zero flows events increases during summertime in dry years and the latter also increased substantially after 2007. The current regulation regime is considered harmful for riverine ecosystems and the high and increasing levels of subdaily flow alteration shows the urgent need of national directives for subdaily hydropower operation.
2

Short-term regulating capacity and operational patterns of The Lule River with large wind power penetration

Lönnberg, Joakim January 2014 (has links)
The growing share of installed wind power in the Swedish electricity system has caused concerns whether the available regulating power will be sufficient. Several studies have examined the need of regulating power using both statistical and modelling approaches. However, there is a risk that some aspects of the short-term regulation of hydropower might have been missed. By using one of Vattenfall’s hydropower planning tools, the short-term operation of The Lule River has been simulated with an increasing penetration of wind power. The tool includes detailed models of reservoirs, generating units including efficiency curves and start/stop costs. By introducing a day-by-day simulation with a seven-day window price forecast, updated with a new wind forecast for each iteration, a 21-days scenario has been simulated. Transmission limits are disregarded and the thermal production is reduced with the average wind production. To quantify and compare the regulation capacity, the regulation factor is introduced. It reflects the ability to utilise high-price hours and considering that the need of regulating power for the short-term perspective is reflected in the price it will also reflect the regulation capacity. It is shown that the regulating factor is correlated to the discharge factor,whichis the relation between the maximum discharge to the average statistical discharge for a plant. A high discharge factor provides the flexibility to utilise the fluctuations in price. The discharge factor is adapted to the plants placement in the reach, accounting for both reservoirs located upstream and downstream, especially for The Lule River which has been designed to regulate for the fluctuations in the load. The flexibility required by the rest of the Nordic rivers is quantified for future studies. It is concluded that The Lule River is able to meet some of the fluctuations of wind power production due to the overcapacity ininstalled power. The production can, at the expense of decreased efficiency of the generating units, alter the production to suit a more fluctuating price.It is important to emphasise that The Lule River alone cannot balance a large penetration of wind power. To fully take into account the effects of a large penetration of wind power the study must be expanded to include more scenarios. The study should include different types of hydrological prerequisites and the seasonal variations in power production as well as additional rivers.
3

Short Term Regulation in Hydropower Plants using Batteries : A case study of hydropower pants in lower Oreälven river

Baskar, Ashish Guhan, Sridhar, Araavind January 2020 (has links)
Hydropower is one of the oldest renewable energy (RE) sources and constitutes a major share in the Swedish electricity mix. Though hydropower is renewable, there exist some issues pertaining to the local aquatic conditions. With more environmental laws being implemented, regulating the use and management of water is jeopardizing the flexibility of hydropower plants. The decided national plan for new environmental conditions in Sweden is expected to start being implemented in 2025 and more restrictions are expected. Analysing a battery energy storage system's capabilities plants may improve flexibility in hydropower plant operation. This thesis is focused on the short-term regulation in lower Oreälven river where the hydropower plants Skattungbyn, Unnån and Hansjö are located. The combined hydropower plant and battery system is simulated being employed in the day-ahead market and a techno-economic optimization of the combined system is performed. The combined system's operation is modelled using Mixed Integer Linear Programming. The future electricity market analysis is modelled using Machine Learning techniques. Three different electricity market scenarios were developed based on different Swedish nuclear energy targets for 2040 to capture the future. The first scenario developed complies with the Swedish energy target of 100 % renewable production in 2040. The second scenario has still two nuclear power plants in operation by 2040 and the third scenario has the same nuclear capacity as of 2020. It is observed from the results that with the current battery costs (~3,6 Million SEK/MWh), the implementation of a battery system for the short term regulation of the combined battery/hydropower system is not profitable and the cost of battery needs to be less than 0,5 Million SEK/MWh to make it profitable. The thesis also discusses the possibility of utilizing batteries’ second life and the techno-economic analysis of their performance. / Vattenkraft är en av de allra äldsta förnybara energikällorna och utgör idag en väsentlig del av Sveriges energimix. Trots att vattenkraft är förnybar, har den lett till vissa utmaningar i den lokala vattenmiljön. Som en följd av att fler miljölagar har implementerats för att reglera nyttjandet av vattendrag och sjöar, minskar flexibiliteten i vattenkraftproduktionen. Den av den svenska regeringen i juni 2020 beslutade nationella planen för miljöanpassning av vattenkraften i Sverige, förväntas börja genomföras med start 2025 och tros då resultera i fler flexibilitetsbegränsningar. Genom att analysera driften av batteriers energilagringssystem kombinerade med vattenkraftverk, bedöms flexibiliteten i sådana kombinerade system kunna ökas. Denna studie fokuserar på den kortsiktiga regleringen av nedre Oreälven med vattenkraftverken Skattungbyn, Unnån och Hansjö. En kombination av vattenkraftverken med batterisystem simuleras mot spot-marknaden och en teknisk-ekonomisk optimering av det kombinerade systemet utförs. Driften av det kombinerade systemet modelleras med linjärprogrammering och den framtida analysen av elmarknaden modelleras med maskininlärningstekniker. Tre olika scenarier för elmarknaden utvecklades baserade på målen för den svenska kärnkraften år 2040. Det första scenariot som utvecklades är i linje med det svenska energimålet om 100 % förnybar produktion till 2040. Det andra scenariot utvecklades med två kärnkraftverk fortfarande i drift 2040 och det tredje scenariot med samma kärnkraftskapacitet som 2020. Från resultaten kan särskilt noteras att med nuvarande batterikostnader (~3,6 miljoner SEK/MWh) kommer införandet av batterier för att kortsiktigt reglera vattenkraftverken inte att vara lönsamt om inte batterikostnaden reduceras till som högst 0,5 miljoner SEK/MWh. Denna studie diskuterar även möjligheterna att använda andrahandsbatterier samt en teknisk-ekonomisk analys för dess prestanda.

Page generated in 0.1436 seconds