• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 411
  • 361
  • 151
  • 45
  • 41
  • 33
  • 28
  • 26
  • 16
  • 15
  • 14
  • 13
  • 12
  • 11
  • 10
  • Tagged with
  • 1305
  • 184
  • 131
  • 118
  • 100
  • 100
  • 99
  • 87
  • 80
  • 75
  • 71
  • 69
  • 62
  • 62
  • 60
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Preparation Of Baxsr1-xtio3 Thin Films By Chemical Solution Deposition And Their Electrical Characterization

Adem, Umut 01 January 2004 (has links) (PDF)
In this study, barium strontium titanate (BST) thin films with different compositions (Ba0.9Sr0.1TiO3, Ba0.8Sr0.2TiO3, Ba0.7Sr0.3TiO3, Ba0.5Sr0.5TiO3) were produced by chemical solution deposition technique. BST solutions were prepared by dissolving barium acetate, strontium acetate and titanium isopropoxide in acetic acid and adding ethylene glycol as a chelating agent and stabilizer to this solution, at molar ratio of acetic acid/ethylene glycol, 3:1. The solution was then coated on Si and Pt//Ti/SiO2/Si substrates at 4000 rpm for 30 seconds. Crack-free films were obtained up to 600 nm thickness after 3 coating &amp / #8211 / pyrolysis cycles by using 0.4M solutions. Crystal structure of the films was determined by x-ray diffraction while morphological properties of the surface and the film-substrate interface was examined by scanning electron microscope (SEM). Dielectric constant, dielectric loss and ferroelectric parameters of the films were measured. Sintering temperature, film composition and the thickness of the films were changed in order to observe the effect of these parameters on the measured electrical properties. The dielectric constant of the films was decreased slightly in 1kHz-1 MHz range. It was seen that dielectric constant and loss of the films was comparable to chemical solution deposition derived films on literature. Maximum dielectric constant was obtained for the Ba0.7Sr0.3TiO3 composition at a sintering temperature of 800&amp / #730 / C for duration of 3 hours. Dielectric constant increased whereas dielectric loss decreased with increasing film thickness. BST films have composition dependent Curie temperature. For Ba content greater than 70 %, the material is in ferroelectric state. However, fine grain size of the films associated with chemical solution deposition and Sr doping causes the suppression of ferroelectric behaviour in BST films. Therefore, only for Ba0.9Sr0.1TiO3 composition, slim hysteresis loops with very low remanent polarization values were obtained.
512

Physics And Technology Of The Infrared Detection Systems Based On Heterojunctions

Aslan, Bulent 01 March 2004 (has links) (PDF)
The physics and technology of the heterojunction infrared photodetectors having different material systems have been studied extensively. Devices used in this study have been characterized by using mainly optical methods, and electrical measurements have been used as an auxiliary method. The theory of internal photoemission in semiconductor heterojunctions has been investigated and the existing model has been extended by incorporating the effects of the difference in the effective masses in the active region and the substrate, nonspherical-nonparabolic bands, and the energy loss per collisions. The barrier heights (correspondingly the cut-off wavelengths) of SiGe/Si samples have been found from their internal photoemission spectrums by using the complete model which has the wavelength and doping concentration dependent free carrier absorption parameters. A qualitative model describing the mechanisms of photocurrent generation in SiGe/Si HIP devices has been presented. It has been shown that the performance of our devices depends significantly on the applied bias and the operating temperature. Properties of internal photoemission in a PtSi/Si Schottky type infrared detector have also been studied. InGaAs/InP quantum well photodetectors that covers both near and mid-infrared spectral regions by means of interband and intersubband transitions have been studied. To understand the high responsivity values observed at high biases, the gain and avalanche multiplication processes have been investigated. Finally, the results of a detailed characterization study on a systematic set of InAs/GaAs self-assembled quantum dot infrared photodetectors have been presented. A simple physical picture has also been discussed to account for the main observed features.
513

Formation Of Semiconductor Nanocrystals In Sio2 By Ion Implantation

Serincan, Ugur 01 June 2004 (has links) (PDF)
In this study, we used ion implantation technique to synthesize semiconductor (Ge, Si) nanocrystals in SiO2 matrix. Ge and Si nanocrystals have been successfully formed by Ge and Si implantation and post annealing. Implanted samples were examined by characterization techniques such as TEM, XPS, EDS, SAD, SIMS, PL, Raman and FTIR spectroscopy and the presence of Ge and Si nanocrystals in the SiO2 matrix has been evidenced by these measurements. It was shown that implantation dose, implantation energy, annealing temperature, annealing time and annealing ambient are important parameters for the formation and evolution of semiconductor nanocrystals embedded in SiO2 matrix. The size and size distribution of Ge and Si nanocrystals were estimated successfully by fitting Raman and PL spectra obtained from Ge and Si implanted samples, respectively. It was demonstrated that Si implanted and post annealed samples exhibit two broad PL peaks at &amp / #8764 / 625 and 850 nm, even at room temperature. Origin of these peaks was investigated by temperature, excitation power and excitation wavelength dependence of PL spectrum and etch-measure experiments and it was shown that the peak observed at &amp / #8764 / 625 nm is related with defects (clusters or chain of Si located near the surface) while the other is related to the Si nanocrystals. As an expected effect of quantum size phenomenon, the peak observed at &amp / #8764 / 850 nm was found to depend on the nanocrystal size. Finally, the formation and evolution of Ge and Si nanocrystals were monitored by FTIR spectroscopy and it was shown that the deformation in SiO2 matrix caused by ion implantation tends to recover itself much quicker in the case of the Ge implantation. This is a result of effective segregation of Ge atoms at relatively low temperatures.
514

Preparation Of Plzt Thin Films By Chemical Solution Deposition And Their Characterization

Kaplan, Burkan 01 December 2005 (has links) (PDF)
ABSTRACT PREPARATION OF PLZT THIN FILMS BY CHEMICAL SOLUTION DEPOSITION AND THEIR CHARACTERIZATION Kaplan, Burkan M.S., Department of Metallurgical and Materials Engineering Supervisor: Prof. Dr. Macit &Ouml / zenbaS November 2005, 125 pages In this study, La3+ was substituted into lead zirconate titanate (PZT) system by Pb1-xLax(ZryTi1-y)1-x/4O3 nominal stochiometry and it was processed via chemical solution deposition on (111)-Pt/Ti/SiO2/Si-(100) substrate.PLZT solutions were prepared by mixing two solutions, one of which was obtained by dissolving lead acetate and lanthanum acetate hydrate in 2 methoxyethanol at high temperature. This solution was then mixed with the second solution containing zirconium propoxide and titanium isopropoxide. 40ml/0.4M solution was prepared and spin coated on Pt/Ti/SiO2/Si substrates at 3000 rpm for 30 seconds. After 4 coating cycles, film thickness was reached to 600 nm. A systematic study was carried out in different regions of PLZT phase diagram tetragonal, rhombohedral and on the morphotropic phase boundry (MPB) to obtain optimized results of ferroelectric, dielectric and optical properties of the material. During the period of the work, effect of parameters on these properties such as heat treatment conditions, chemical composition of the film, microstructure and thickness of the film was investigated. The films were characterized structurally and electrically. For structural properties, X-ray diffraction technique (XRD), energy dispersive spectrometry (EDS) and Scanning Electron Microscope (SEM) were used to observe phases and surface characterization. For electrical measurements, ferroelectric tester was used to obtain dielectric constant, loss tangent and hysteresis curves. Optical transmittance of the films was also investigated by UV-VIS Spectrophotometer and optical film constants were calculated by modified envelope method. It was observed that the optimum heat treatment conditions were achieved at 7500C for 3 hours. The highest ferroelectric and dielectric properties such as remanent polarization and dielectric constant were obtained using that temperature. The dielectric constant of the films was measured in the frequency range of 1kHz-1MHz and remained almost constant in this region. The change of dielectric constant and ferroelectric hysteresis loops were obtained as a function of Zr/Ti ratio and La content. The grain size as a function of sintering temperature and La content was investigated. It was seen that as the sintering temperature was increased, the grain size of the films increased. The same tendency was also observed when the La content was increased. Fatigue behavior of PLZT thin films was also investigated by Radiant Ferroelectric Tester at 50 kHz and &plusmn / 15V. Change of remanent polarization (Pr) as a function of cumulative switching cycles (N) was drawn with the log scale of x-axis. Furthermore, leakage current characteristics of the films were also obtained by the ferroelectric tester at &amp / #61617 / 15V. It has been observed that as the La content of the film was increased, leakage current of the PLZT films decreased. Keywords: PLZT, (111)-Pt/Ti/SiO2/Si-(100) substrate, Chemical Solution Deposition.
515

Fabrication of surface micro- and nanostructures for superhydrophobic surfaces in electric and electronic applications

Xiu, Yonghao 10 November 2008 (has links)
In our study, the superhydrophobic surface based on biomimetic lotus leave is explored to maintain the desired properties for self-cleaning. In controlling bead-up and roll-off characteristics of water droplets the contact angle and contact angle hysteresis were very important and we investigated the determining conditions on different model surfaces with micro- and nanostructures. Two governing equations were proposed, one for contact angle based on Laplace pressure and one for contact angle hysteresis based on Young-Dupré equation. Based on these understanding on superhydrophobicity, possible applications of the superhydrophobicity for self-cleaning and water repellency were explored and application related technical issues were addressed. Based on our understanding of the roughness effect on superhydrophobicity (both contact angle and hysteresis), structured surfaces from polybutadiene, polyurethane, silica, and Si etc were successfully prepared. For engineering applications of superhydrophobic surfaces, stability issues regarding UV, mechanical robustness and humid environment need to be investigated. Among these factors, UV stability is the first one to be studied. Silica surfaces with excellent UV stability were prepared. UV stability on the surface currently is 5,500 h according the standard test method of ASTM D 4329. No degradation on surface superhydrophobicity was observed. New methods for preparing superhydrophobic and transparent silica surfaces were investigated using urea-choline chloride eutectic liquid to generate fine roughness and reduce the cost for preparation of surface structures. Another possible application for self-cleaning in photovoltaic panels was investigated on Si surfaces by construction of the two-scale rough structures followed by fluoroalkyl silane treatment. Regarding the mechanical robustness, epoxy-silica superhydrophobic surfaces were prepared by O2 plasma etching to generate enough surface roughness of silica spheres followed by fluoroalkyl silane treatment. A robustness test method was proposed and the test results showed that the surface is among the most robust surfaces for the superhydrophobic surfaces we prepared and currently reported in literature.
516

Contact resistance study on polycrystalline silicon thin-film solar cells on glass

Shi, Lei, Photovoltaics & Renewable Energy Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Thin-film solar cells are widely recognised to have the potential to compete with fossil fuels in the electricity market due to their low cost per peak Watt. The Thin-Film Group at the University of New South Wales (UNSW) is engaged in developing polycrystalline silicon (poly-Si) thin-film solar cells on glass using e-beam evaporation technology. We believe our solar cells have the potential of significantly lowering the manufacturing cost compared to conventional, PECVD-fabricated thin-film solar cells. After years of materials research, the focus of the Group??s work is now moving to the metallisation of evaporated solar cells. Minimising various kinds of losses is the main challenge of the cell metallisation procedure, within which the contact resistance is always a big issue. In this thesis, the contact resistance of aluminium contacts on poly-Si thin-film solar cells on glass is investigated. To the best of the author??s knowledge, this is the first ever contact resistance investigation of Al contacts on evaporated poly-Si material for photovoltaic applications. Various transmission line models (TLM) are employed to measure the contact resistance. An improved TLM model is developed to increase the measurement precision and, simultaneously, to simplify the TLM pattern fabrication process. In order to accommodate the particular requirements of poly-Si coated glass substrates, a TLM pattern fabrication process using photolithography is established. Furthermore, a Kelvin sense tester is set up to ensure an accurate measurement of the contact resistance. After establishment of the TLM technique at UNSW, it is successfully tested on singlecrystalline silicon wafer samples. The thermal annealing process of the contacts is also optimised. Then, the general behaviour of Al contacts on uniformly doped poly-Si films (i.e., no p-n junction) is investigated using the verified TLM technique. The long-term stability of the contacts is also studied. This is followed by an investigation of the contact resistance of the back surface field and emitter layers of different types of poly-Si thin-film solar cells. Finally, a novel contact resistance measurement model is proposed that is believed to be able to overcome the measurement bottleneck of the transmission line models.
517

Investigation of the SiN Deposition and effect of the hydrogenation on solid-phase crystallisation of evaporated thin-film silicon solar cells on glass

Sakano, Tomokazu, Photovoltaics & Renewable Energy Engineering, Faculty of Engineering, UNSW January 2008 (has links)
One of the poly-Si thin-film cells developed at the University of New South Wales (UNSW) is the EVA cell. In this work, SiN films for EVA cells as an antireflection/barrier coating were investigated. In addition, the effect of hydrogenation pre-treatment of solid phase crystallisation (SPC) on grain size and open-circuit voltage (Voc) was investigated. The SiN films deposited by PECVD were examined for uniformity of the thickness and the refractive index of the films across the position of the samples in the PECVD deposition system. A spectrophotometric analysis was used to determine these film properties. It was found that these properties were very uniform over the deposition area. Good repeatability of the depositions was also observed. A series of SiN film depositions by reactive sputtering were also performed to optimize the deposition process. Parameters adjusted during the deposition were nitrogen flow rate, substrate bias, and substrate temperature. By investigating the deposition rate, refractive index, and surface roughness of the films, the three deposition parameters were optimised. The effects of post SiN deposition treatments (a-Si deposition, SPC, RTA, and hydrogenation) on thickness and refractive index of both SiN films deposited by PECVD and reactive sputtering were investigated by using samples which have the same structure as the EVA cells. The thickness of the PECVD SiN films decreased about 6 % after all the treatments. On the other hand, the thickness reductions of the reactively sputtered SiN films were very small. The refractive index of the PECVD SiN films increased about 0.6 % after the treatments, whereas that of the reactively sputtered SiN films decreased 1.3 % after the treatments. As a possible method to improve the performance of EVA cells, hydrogenation of a-Si was investigated as a pre-treatment of SPC process. There were no obvious differences in the grainsize and the Voc of the EVA cells with and without the hydrogenation. Therefore it is likely that the hydrogenation pre-treatment of SPC does not have a beneficial effect on the performance of EVA cells.
518

Training home group leaders to assist the ministry of the senior pastor /

Ji, Kwang Sig. January 2006 (has links)
Applied research project (D. Min.)--School of Theology and Missions, Oral Roberts University, 2006. / Includes abstract and vita. Translated from Korean. Includes bibliographical references (leaves 172-175).
519

[Training home group leaders to assist the ministry of the senior pastor] /

Ji, Kwang Sig. January 2006 (has links)
Applied research project (D. Min.)--School of Theology and Missions, Oral Roberts University, 2006. / Includes abstract and vita. Includes bibliographical references (leaves 169-173).
520

Gu gu tou que xue xing huai si de zhong yi yao zhi liao wen xian yan jiu /

Tan, Jianbin. January 2006 (has links) (PDF)
Thesis (M.CM)--Hong Kong Baptist University, 2006. / Dissertation submitted to the School of Chinese Medicine. Includes bibliographical references (leaves 32-35).

Page generated in 0.0557 seconds