• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1086
  • 279
  • 199
  • 167
  • 93
  • 50
  • 47
  • 32
  • 18
  • 16
  • 14
  • 13
  • 10
  • 9
  • 9
  • Tagged with
  • 2394
  • 505
  • 383
  • 278
  • 266
  • 238
  • 212
  • 210
  • 209
  • 195
  • 184
  • 165
  • 149
  • 143
  • 143
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

The role of Hh signaling in mouse retinal bipolar cell subtype development

Wu, Di 08 August 2017 (has links)
In the vertebrate retina, bipolar interneurons consist of at least 13 distinct subtypes, which are classified based on their morphology, behavior and gene expression. The mechanisms underlying the formation of these subtypes is poorly understood. Our previous unpublished work has implicated Sonic Hedgehog (Shh) in the formation of cone and rod bipolar cell subtypes. In this thesis, I characterized the relationship between Hh signaling and bipolar subtype cell development in greater detail. Using an in vivo plasmid-based reporter approach, I show that Hh signaling is active in both retinal progenitor cells (RPCs) and bipolar cells of the postnatal retina. Next, to address function, I used a conditional gene targeting approach to show that activation of Smoothened (Smo), a downstream Hh signaling component, is both necessary and sufficient in postnatal RPCs to promote the formation of cone but not rod bipolar cells. In contrast, activation of Smo in postmitotic bipolar cells that are greater than 24 hours old from cell birth, does not affect bipolar subtype formation. Together, these results suggest that Hh signaling functions in postnatal RPCs (and potentially in early bipolar cell precursors) to promote cone bipolar cell formation. / Graduate / 2018-06-12
452

Protein kinase A regulates the Ras, Rap1 and TORC2 pathways in response to the chemoattractant cAMP in Dictyostelium

Scavello, Margarethakay, Petlick, Alexandra R., Ramesh, Ramya, Thompson, Valery F., Lotfi, Pouya, Charest, Pascale G. 01 May 2017 (has links)
Efficient directed migration requires tight regulation of chemoattractant signal transduction pathways in both space and time, but the mechanisms involved in such regulation are not well understood. Here, we investigated the role of protein kinase A (PKA) in controlling signaling of the chemoattractant cAMP in Dictyostelium discoideum. We found that cells lacking PKA display severe chemotaxis defects, including impaired directional sensing. Although PKA is an important regulator of developmental gene expression, including the cAMP receptor cAR1, our studies using exogenously expressed cAR1 in cells lacking PKA, cells lacking adenylyl cyclase A (ACA) and cells treated with the PKA-selective pharmacological inhibitor H89, suggest that PKA controls chemoattractant signal transduction, in part, through the regulation of RasG, Rap1 and TORC2. As these pathways control the ACA-mediated production of intracellular cAMP, they lie upstream of PKA in this chemoattractant signaling network. Consequently, we propose that the PKA-mediated regulation of the upstream RasG, Rap1 and TORC2 signaling pathways is part of a negative feedback mechanism controlling chemoattractant signal transduction during Dictyostelium chemotaxis.
453

Discovering Novel Feedback and Crosstalk Mechanisms in Cellular Signaling Pathways

Er, Ekrem Emrah 07 June 2017 (has links)
Multiple signaling pathways control cellular response to environmental cues such as nutrients, growth factors and stress. Interpretation of these cues requires coordinated regulation of intracellular signaling pathways. Our attempt to understand how cells coordinate different signaling pathways led to the discovery of two crosstalk mechanisms between different signaling cascades. We found that PI3K-AKT signaling reduces EGFR signaling to the parallel ERK-MAPK pathway by enhancing EGF induced EGFR degradation. At the molecular level AKT activates PIKfyve to facilitate EGFR trafficking from early endosomes to the lysosomes. Using a mass spectrometry based approach we also found growth factor signaling by EGF inhibits stress response. In particular, inhibiting RSK signaling downstream of EGF increased the activity of stress activated kinases p38, MSK2 and ERK5. We propose that when growth factors are present active RSK phosphorylates and inhibits a master regulator of stress response MEKK3, which leads to termination of MEKK3 signaling to downstream kinases. Our unbiased phosphoproteomic approach also lead to identification of many ERK and RSK substrates that will help us explain how growth factor signaling regulates a wide variety of biological processes.
454

Studies on the Expression and Phosphorylation of the USP4 Deubiquitinating Enzyme

Bastarache, Sophie January 2011 (has links)
The USP4 is a deubiquitinating enzyme found elevated in certain human lung and adrenal tumours. USP4 has a very close relative, USP15, which has caused great difficulty in studying only one or the other. We have had generated two antibodies specific to USP4 and USP15, and have confirmed that the two do not cross react. Although there have been previous findings of interacting partners, possible substrates and pathways in which it is involved, the biological role of USP4 is mostly unknown. We have used these antibodies to determine that USP4 and USP15 expression differs across tissue and cell types, and that expression changes as the organism ages. We have shown that USP4 plays a role in canonical Wnt signaling, perhaps by stabilizing Beta-catenin, and identified GRK2 as a kinase, phosphorylating USP4. These data have provided enough information to form a hypothesis, implicating USP4 with the destruction complex in the Wnt signaling pathway.
455

Integrin-linked Kinase Functions as a Cytoskeletal Scaffold in Oligodendrocyte Migration, Differentiation and Central Nervous System Myelination

O'Meara, Ryan January 2014 (has links)
In the central nervous system (CNS), oligodendrocytes (OLs) generate myelin to facilitate the rapid propagation of neuronal impulses. In multiple sclerosis (MS), chronic demyelination leads to irreversible neurodegeneration that eventually impairs physical and cognitive function. Much effort is directed at elucidating the mechanisms underlying OL development in hope to unveil therapeutic targets for promoting remyelination in MS. Many aspects of OL biology are regulated by the integrins, a large family of transmembrane extracellular matrix (ECM) receptors. ECM components such as laminin and fibronectin bind to OL integrin receptors and initiate downstream signaling cascades involved in survival, proliferation, differentiation/myelination and migration. Integrin-linked kinase (ILK), an adaptor protein that binds to integrin cytosolic tails, works to stabilize the ECM-integrin connection by indirectly targeting the actin cytoskeleton to ECM adhesion sites. We hypothesized that ILK played an important role in OL migration, differentiation and capacity to myelinate neuronal projections. To address this hypothesis, we developed three cell culture techniques to assess these cellular phenomena in vitro. Conditional knockout of Ilk compromised both the morphological and molecular differentiation of primary mouse OLs in vitro, and reduced their capacity to produce myelin-like membrane. ILK was required for proper OL ensheathment of neuronal extensions when co-cultured with primary neurons. Conditional ablation of Ilk in vivo produced a transient amyelination defect that was endogenously compensated for at later time points. Loss of ILK in primary OLs was associated with upregulated RhoA signaling, and pharmacological inhibition of the RhoA axis restored the morphology of a distinct subset of NG2+ OPCs. ILK depletion in OL precursor cells (OPCs) resulted in a substrate-dependent defect in migration velocity and migration initiation. Inhibition of the RhoA signaling pathway enhanced the migratory velocity of wild-type OPCs, an effect that was dependent on ILK expression. In sum, we established three primary mouse OL cell culture techniques, with which we defined roles for ILK in OL biology. Our work highlights the importance of integrin signaling in OLs and provides new experimental methods useful in MS research.
456

Characterizing the Biochemical and Toxicological Effects of Nanosilver in vivo Using Zebrafish (Danio rerio) and in vitro Using Rainbow Trout (Oncorhynchus mykiss)

Massarsky, Andrey January 2014 (has links)
Many consumer and medical products contain engineered nanomaterials (ENMs) due to their unique properties arising from their small size of <100 nm in at least one dimension. Although ENMs could greatly improve the quality of daily life, concerns for their health and environmental safety emerged in recent years because the same properties that make ENMs beneficial may also render them toxic. The small size allows ENMs’ entrance into the cell where they may attach to biological molecules and membranes, disrupting their function and/or leading to oxidative stress and/or damage. This thesis focused on silver nanoparticles (AgNPs). Several articles demonstrated that during washing AgNPs are released from the AgNP-impregnated fabrics and could pose a risk to aquatic species. Given that the toxicity mechanisms of AgNPs are yet to be clearly understood this thesis investigated the effects of AgNPs from ‘oxidative stress’ and ‘endocrine disruption’ points of view, using both in vivo and in vitro model fish systems. A 4 d exposure of zebrafish (Danio rerio) embryos to AgNPs increased mortality, delayed hatching, and increased oxidative stress. The silver ion (Ag+) was more effective in eliciting these effects at equivalent silver concentrations. Moreover, the Ag-chelator cysteine reduced the toxicity of both Ag-types. Despite these effects AgNPs or Ag+ did not affect the ability of zebrafish larvae or adults (raised to adulthood in Ag-free water) to increase cortisol levels, but there were differential effects on the expression of corticotropin-releasing factor (CRF)-related genes, suggesting that other physiological processes regulated by CRF may be impacted. Furthermore, a 48 h exposure of rainbow trout (Oncorhynchus mykiss) erythrocytes and hepatocytes to AgNPs or Ag+ increased oxidative stress, but Ag+ was more potent. Moreover, AgNPs elevated lipid peroxidation, while Ag+ increased DNA damage, suggesting different modes of action for the two Ag-types. Cysteine treatment reduced the toxicity of Ag+ and AgNPs, while buthionine sulfoximine, which inhibits glutathione synthesis, increased it, suggesting the importance of glutathione in silver toxicity. Finally, AgNPs increased glycogenolysis in trout hepatocytes independently of the beta-adrenoreceptor or the glucocorticoid receptor.
457

Signalisation et oncogenèse dans le mélanome

Marquette, Amélie 14 December 2009 (has links)
Le mélanome, la tumeur cutanée la plus agressive, est devenu un problème majeur de santé publique dans de nombreux pays. Diagnostiqué précocement, il peut être traité par excision chirurgicale, mais le pronostic pour les mélanomes plus avancés est très mauvais car cette tumeur est résistante à toutes les thérapies utilisées à ce jour. Dans le but de développer de nouvelles thérapies pour traiter cette tumeur, nous étudions les voies de signalisation qui jouent un rôle prépondérant dans la prolifération, la survie et la différenciation des mélanocytes et des mélanomes. Il s’agit de la voie des MAPK, la voie PI3K et la voie de l’AMP cyclique (AMPc). Nous avons tout d’abord démontré que certaines phosphodiestérases (PDE ; les inhibiteurs physiologiques de la voie de l’AMPc) sont surexprimées dans les lignées de mélanomes et inhibent ainsi la différenciation de ces cellules. La surexpression des PDEs est nécessaire à la transformation des mélanocytes par l’oncogène Ras alors que la réactivation de la voie de l’AMPc dans les lignées de mélanome inhibe leur prolifération. Ces données suggèrent qu’une stratégie thérapeutique qui aurait pour objectif de stimuler la différenciation des mélanomes en réactivant la voie de l’AMPc pourrait permettre d’inhiber leur prolifération. Nous avons par ailleurs montré que la protéine kinase B-Raf, qui est fréquemment mutée dans les mélanomes, était cependant inactivée dans les mélanomes contenant une mutation de Ras. Nous avons démontré que cette inhibition était due à une régulation négative de B-Raf par son substrat Erk. En effet, Erk phosphoryle B-Raf sur sa partie amino-terminale pour empêcher son interaction avec Ras. Ce mécanisme de régulation négative de B-Raf force ces lignées de mélanomes à utiliser l’isoforme C-Raf. Ce travail a des conséquences sur le traitement du mélanome. En effet, si B-Raf n’est pas utilisé pour l’activation de la voie des MAPK dans les mélanomes mutés N-Ras, les inhibiteurs de B-Raf en développement clinique seront inefficaces dans ces cancers. Nous avons par ailleurs démontré qu‘un inhibiteur des kinases B-Raf et C-Raf, en développement clinique (Sorafenib), induisait l’activation de ces kinases par hétérodimérisation en régulant leur phosphorylation. Ces résultats mettent en évidence de nouveaux mécanismes de régulation des proto-oncogènes B-Raf et C-Raf qui pourraient jouer un rôle important dans la résistance des mélanomes aux inhibiteurs de Raf qui sont actuellement en développement clinique. / Melanoma, the most aggressive skin tumor, has become a major public health problem in many countries. Diagnosed early, it can be treated by surgical excision, but the prognosis for advanced melanoma is very poor because the tumor is resistant to all therapies used today. In order to develop new therapies to treat this tumor, we study the signaling pathways that play a major role in the proliferation, survival and differentiation of melanocytes and melanoma. These are the MAPK, PI3K pathway and the cyclic AMP (cAMP). We first demonstrated that some phosphodiesterases (PDEs; physiological inhibitors of cAMP pathway) are overexpressed in melanoma lines and thus inhibit the differentiation of these cells. Overexpression of PDEs is necessary for melanocyte transformation by oncogenic Ras when the reactivation of the cAMP pathway in melanoma lines inhibits their proliferation. These data suggest a therapeutic strategy that would aim to stimulate the differentiation of melanoma by reactivating the cAMP pathway could help to inhibit their proliferation. We have also shown that the protein kinase B-Raf, which is frequently mutated in melanoma, however, was inactivated in melanomas containing a mutation of Ras. We demonstrated that this inhibition was due to a downregulation of B-Raf by Erk substrate. Indeed, Erk phosphorylates B-Raf on its amino-terminal to prevent its interaction with Ras. This negative regulatory mechanism of B-Raf melanoma is forcing these lines to use isoform C-Raf. This work has implications for the treatment of melanoma. Indeed, if B-Raf is not used for the activation of MAPK in N-Ras mutated melanoma, the B-Raf inhibitors in clinical development will be ineffective in these cancers. We also demonstrated that a kinase inhibitor of B-Raf and C-Raf, which is in clinical development (Sorafenib), induces the activation of these kinases by heterodimerization in regulating their phosphorylation. These results reveal new mechanisms of regulation of proto-oncogene B-Raf and C-Raf, which could play an important role in the resistance of melanoma to Raf inhibitors, which are currently in clinical development.
458

Adaptations in the Pancreatic Islet Transcriptome of Intrauterine Growth Restricted Fetuses

Kelly, Amy, Kelly, Amy January 2017 (has links)
We established that acute adrenergic receptor stimulation in β-cells suppresses oxidative metabolism. This effect provides the basis for understanding how CAs reduce cell proliferation. Furthermore, the effects of acute CA on Min6 cells were distinguished from chronic CA culture using proteomics. Together, the RNAseq, qPCR and proteomic studies support a role for adrenergic receptor signaling in the regulation of proliferaton in β-cells. This work describes the genetic and proteomic profile underlying chronic adrenergic signaling and identifies CA independent suppression of β-cell growth and metabolism. Through the use of multiple models and comparative bioinformatics, we refined the list of molecular dysfunctions associated with the IUGR pathology to a set of specific and testable adrenergic targets.
459

Signalizační chování na trhu práce a problém vzdělání / Labour market signaling and education

Bican, Vítězslav January 2013 (has links)
The dissertation thesis deals with the problem of signaling behaviour at the labour market. It wants to shed more light on the difference between signaling and the traditionally accepted human capital theory, in order to find common points and distinctions. Both are later used in the model-parts of the thesis where I try to model demad for education and labour demand under both approaches. Both models are theorethical-based and explatin different possibilities how both these variables are formed in the labour market.
460

Louder and Stronger? The Role of Signaling and Receptivity in Democratic Breakdowns and Their Impact Upon Neighboring Regimes

Ludwig, Tommy 12 1900 (has links)
The purpose of this thesis is to establish what specific forces influence whether or not a democratic setback within one nation will diffuse to peripheral states. Past studies devoted to this topic have largely suggested that diffusion essentially functions like a contagious disease, where the likelihood of "infection" is primarily based upon the level of interaction between states. This thesis however proposes that the interaction of the signal generated from a democratic state's collapse and the receptiveness of neighboring nations to this signal ultimately determines when and where diffusion will occur. In order to test the validity of this thesis' claims, the level of democracy within the neighboring states of all failed democratic governments spanning the years 1842-2002 are examined during the first years following such system breakdowns within a large-N quantitative research design. Ultimately this study leads to the conclusion that the interaction of signals and receptivity play a major role in the diffusion of democratic setbacks.

Page generated in 0.1024 seconds