• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 18
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 89
  • 15
  • 15
  • 12
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A contribution to the theory of (signed) graph homomorphism bound and Hamiltonicity / Une contribution à la théorie des graphes (signés) borne d’homomorphisme et hamiltonicité

Sun, Qiang 04 May 2016 (has links)
Dans cette thèse, nous etudions deux principaux problèmes de la théorie des graphes: problème d’homomorphisme des graphes planaires (signés) et problème de cycle hamiltonien.Comme une extension du théorème des quatre couleurs, il est conjecturé([80], [41]) que chaque graphe signé cohérent planaire de déséquilibré-maille d+1(d>1) admet un homomorphisme à cube projective signé SPC(d) de dimension d. La question suivant étalés naturelle:Est-ce que SPC(d) une borne optimale de déséquilibré-maille d+1 pour tous les graphes signés cohérente planaire de déséquilibré-maille d+1?Au Chapitre 2, nous prouvons que: si (B,Ω) est un graphe signé cohérente dedéséquilibré-maille d qui borne la classe des graphes signés cohérents planaires de déséquilibré-maille d+1, puis |B| ≥2^{d−1}. Notre résultat montre que si la conjecture ci-dessus est vérifiée, alors le SPC(d) est une borne optimale à la fois en terme du nombre des sommets et du nombre de arêtes.Lorsque d=2k, le problème est équivalent aux problème des graphes:est-ce que PC(2k) une borne optimale de impair-maille 2k+1 pour P_{2k+1} (tous les graphes planaires de impair-maille au moins 2k+1)? Notez que les graphes K_4-mineur libres sont les graphes planaires, est PC(2k) aussi une borne optimale de impair-maille 2k+1 pour tous les graphes K_4-mineur libres de impair-maille 2k+1? La réponse est négative, dans[6], est donné une famille de graphes d’ordre O(k^2) que borne les graphes K_4-mineur libres de impair-maille 2k+1. Est-ce que la borne optimale? Au Chapitre 3, nous prouvons que: si B est un graphe de impair-maille 2k+1 qui borne tous les graphes K_4-mineur libres de impair-maille 2k+1, alors |B|≥(k+1)(k+2)/2. La conjonction de nos résultat et le résultat dans [6] montre que l’ordre O(k^2) est optimal. En outre, si PC(2k) borne P_{2k+1}, PC(2k) borne également P_{2r+1}(r>k).Cependant, dans ce cas, nous croyons qu’un sous-graphe propre de P(2k) serait suffisant à borner P_{2r+1}, alors quel est le sous-graphe optimal de PC2k) qui borne P_{2r+1}? Le premier cas non résolu est k=3 et r= 5. Dans ce cas, Naserasr [81] a conjecturé que le graphe Coxeter borne P_{11}. Au Chapitre 4, nous vérifions cette conjecture pour P_{17}.Au Chapitres 5, 6, nous étudions les problèmes du cycle hamiltonien. Dirac amontré en 1952 que chaque graphe d’ordre n est hamiltonien si tout sommet a un degré au moins n/2. Depuis, de nombreux résultats généralisant le théorème de Dirac sur les degré ont été obtenus. Une approche consiste à construire un cycle hamiltonien à partir d'un ensemble de sommets en contrôlant leur position sur le cycle. Dans cette thèse, nous considérons deux conjectures connexes. La première est la conjecture d'Enomoto: si G est un graphe d’ordre n≥3 et δ(G)≥n/2+1, pour toute paire de sommets x,y dans G, il y a un cycle hamiltonien C de G tel que dist_C(x,y)=n/2.Notez que l’ ́etat de degre de la conjecture de Enomoto est forte. Motivé par cette conjecture, il a prouvé, dans [32], qu’une paire de sommets peut être posé des distances pas plus de n/6 sur un cycle hamiltonien. Dans [33], les cas δ(G)≥(n+k)/2 sont considérés, il a prouvé qu’une paire de sommets à une distance entre 2 à k peut être posé sur un cycle hamiltonien. En outre, Faudree et Li ont proposé une conjecture plus générale: si G est un graphe d’ordre n≥3 et δ(G)≥n/2+1, pour toute paire de sommets x,y dans G et tout entier 2≤k≤n/2, il existe un cycle hamiltonien C de G tel que dist_C(x,y)=k. Utilisant de Regularity Lemma et Blow-up Lemma, au chapitre 5, nous donnons une preuve de la conjeture d'Enomoto conjecture pour les graphes suffisamment grand, et dans le chapitre 6, nous donnons une preuve de la conjecture de Faudree et Li pour les graphe suffisamment grand. / In this thesis, we study two main problems in graph theory: homomorphism problem of planar (signed) graphs and Hamiltonian cycle problem.As an extension of the Four-Color Theorem, it is conjectured ([80],[41]) that every planar consistent signed graph of unbalanced-girth d+1(d>1) admits a homomorphism to signed projective cube SPC(d) of dimension d. It is naturally asked that:Is SPC(d) an optimal bound of unbalanced-girth d+1 for all planar consistent signed graphs of unbalanced-girth d+1?In Chapter 2, we prove that: if (B,Ω) is a consistent signed graph of unbalanced-girth d which bounds the class of consistent signed planar graphs of unbalanced-girth d, then |B|≥2^{d-1}. Furthermore,if no subgraph of (B,Ω) bounds the same class, δ(B)≥d, and therefore,|E(B)|≥d·2^{d-2}.Our result shows that if the conjecture above holds, then the SPC(d) is an optimal bound both in terms of number of vertices and number of edges.When d=2k, the problem is equivalent to the homomorphisms of graphs: isPC(2k) an optimal bound of odd-girth 2k+1 for P_{2k+1}(the class of all planar graphs of odd-girth at least 2k+1)? Note that K_4-minor free graphs are planar graphs, is PC(2k) also an optimal bound of odd-girth 2k+1 for all K_4-minor free graphs of odd-girth 2k+1 ? The answer is negative, in [6], a family of graphs of order O(k^2) bounding the K_4-minor free graphs of odd-girth 2k+1 were given. Is this an optimal bound? In Chapter 3, we prove that: if B is a graph of odd-girth 2k+1 which bounds all the K_4-minor free graphs of odd-girth 2k+1,then |B|≥(k+1)(k+2)/2. Our result together with the result in [6] shows that order O(k^2) is optimal.Furthermore, if PC(2k) bounds P_{2k+1},then PC(2k) also bounds P_{2r+1}(r>k). However, in this case we believe that a proper subgraph of PC(2k) would suffice to bound P_{2r+1}, then what’s the optimal subgraph of PC(2k) that bounds P_{2r+1}? The first case of this problem which is not studied is k=3 and r=5. For this case, Naserasr [81] conjectured that the Coxeter graph bounds P_{11} . Supporting this conjecture, in Chapter 4, we prove that the Coxeter graph bounds P_{17}.In Chapter 5,6, we study the Hamiltonian cycle problems. Dirac showed in 1952that every graph of order n is Hamiltonian if any vertex is of degree at least n/2. This result started a new approach to develop sufficient conditions on degrees for a graph to be Hamiltonian. Many results have been obtained in generalization of Dirac’s theorem. In the results to strengthen Dirac’s theorem, there is an interesting research area: to control the placement of a set of vertices on a Hamiltonian cycle such that thesevertices have some certain distances among them on the Hamiltonian cycle.In this thesis, we consider two related conjectures, one is given by Enomoto: if G is a graph of order n≥3, and δ(G)≥n/2+1, then for any pair of vertices x, y in G, there is a Hamiltonian cycle C of G such that dist_C(x, y)=n/2. Motivated by this conjecture, it is proved,in [32],that a pair of vertices are located at distances no more than n/6 on a Hamiltonian cycle. In [33], the cases δ(G) ≥(n+k)/2 are considered, it is proved that a pair of vertices can be located at any given distance from 2 to k on a Hamiltonian cycle. Moreover, Faudree and Li proposed a more general conjecture: if G is a graph of order n≥3, and δ(G)≥n/2+1, then for any pair of vertices x, y in G andany integer 2≤k≤n/2, there is a Hamiltonian cycle C of G such that dist_C(x, y) = k. Using Regularity Lemma and Blow-up Lemma, in Chapter 5, we give a proof ofEnomoto’s conjecture for graphs of sufficiently large order, and in Chapter 6, we give a proof of Faudree and Li’s conjecture for graphs of sufficiently large order.
42

Link Label Prediction in Signed Citation Network

Akujuobi, Uchenna Thankgod 12 April 2016 (has links)
Link label prediction is the problem of predicting the missing labels or signs of all the unlabeled edges in a network. For signed networks, these labels can either be positive or negative. In recent years, different algorithms have been proposed such as using regression, trust propagation and matrix factorization. These approaches have tried to solve the problem of link label prediction by using ideas from social theories, where most of them predict a single missing label given that labels of other edges are known. However, in most real-world social graphs, the number of labeled edges is usually less than that of unlabeled edges. Therefore, predicting a single edge label at a time would require multiple runs and is more computationally demanding. In this thesis, we look at link label prediction problem on a signed citation network with missing edge labels. Our citation network consists of papers from three major machine learning and data mining conferences together with their references, and edges showing the relationship between them. An edge in our network is labeled either positive (dataset relevant) if the reference is based on the dataset used in the paper or negative otherwise. We present three approaches to predict the missing labels. The first approach converts the label prediction problem into a standard classification problem. We then, generate a set of features for each edge and then adopt Support Vector Machines in solving the classification problem. For the second approach, we formalize the graph such that the edges are represented as nodes with links showing similarities between them. We then adopt a label propagation method to propagate the labels on known nodes to those with unknown labels. In the third approach, we adopt a PageRank approach where we rank the nodes according to the number of incoming positive and negative edges, after which we set a threshold. Based on the ranks, we can infer an edge would be positive if it goes a node above the threshold. Experimental results on our citation network corroborate the efficacy of these approaches. With each edge having a label, we also performed additional network analysis where we extracted a subnetwork of the dataset relevant edges and nodes in our citation network, and then detected different communities from this extracted sub-network. To understand the different detected communities, we performed a case study on several dataset communities. The study shows a relationship between the major topic areas in a dataset community and the data sources in the community.
43

Signed Anti-Aliased Euclidean Distance Transform : Going from unsigned to signed with the assistance of a vector based method / Dubbelriktad Anti-Aliased Euclidean Distance Transform : Att gå från enkel- till dubbelriktad, med hjälp av en vektorbaserad metod

Johanssson, Erik January 2022 (has links)
Knowing the shapes, sizes and positional relations between features in an image can be useful for different types of image processing.Using a Distance Transform can give us these properties as a Distance Map.There are many different variations of distance transforms that can increase accuracy or add functionality, two such transforms are the Anti-Aliased Euclidean Distance Transform and the Signed Euclidean Distance Transform.To get the benefits of both of these it is of interest to see if they can be combined and if so, how does it perform?Investigating the possibility of such a transform is the main object of this thesis. To create this combined transform a copy of the image was created and then inverted, both images are transformed and the resulting distance maps are combined into one.Signed distance maps are created for three transforms using this method. The transforms in question are, EDT, AAEDT and VAAEDT.All transforms are then evaluated using a series of images containing two randomly placed circles, the circles are created using simple Signed Distance Functions. The signed transforms work and the AAEDT performs well compared to the Signed Euclidean Distance Transform.These results were expected as a similar gap in results can be seen between the regular EDT and AAEDT.But, this transform is not perfect and there is room for improvements in the accuracy, a good start for future work. / Att känna till formen, storleken samt olika objekts position relativt till varandra i en bild kan vara användbart för olika former av bildanalys.En Distance Transform kan ge oss alla dessa egenskaper i form av en ny bild, en så kallad avståndskarta.Det finns flera olika transformer som producerar avståndskartor med olika egenskaper och precision, två exempel är Anti-Aliased Euclidean Distance Transform och Signed Euclidean Distance Transform.För att få den ökade precisionen av Anti-Aliased Euclidean Distance Transform och funktionaliteten från en dubbelriktad så är det relevant att undersöka om de går att kombinera och om det går, hur presterar den nya transformen?Att undersöka om detta är möjligt är huvudmålet med detta arbete. För att skapa denna kombinerade transform så kopieras och inverteras bilden som ska transformeras, både kopian och orginalet transformeras sedan och de resulterande avståndskartorna kombineras till ett resultat.Dubbelriktade avståndskartor skapas för tre transformer, Euclidean Distance Transform, Anti-Aliased Euclidean Distance Transform och Vector Anti-Aliased Euclidean Distance Transform.Alla tre transformer utvärderas sedan genom en serie testbilder innehållandes två slumpmässigt placerade cirklar, skapade med hjälp av vektormatematik. De dubbelriktade transformerna fungerar och resultaten är i linje med motsvarande resultat för enkelriktade transformer.Detta betyder dock inte att resultaten är perfekta, utan det finns utrymme för prestandavinster i precisionen, detta är därför en bra startriktning för framtida förbättringsarbete.
44

Signed Distance Field For Deformable Terrain Shovel Collision Detection

Strid, Johannes January 2023 (has links)
One commonly used representation of complex objects in physics-based simulations are triangle meshes. This representation utilizes a collection of triangles to approximate an object. An alternative representation is a Signed Distance Field (SDF). This thesis aims to evaluate the effectiveness of representing a heavy machine bucket as an SDF, specifically in the application of collision detection with a de-formable terrain. Additionally, this thesis describes the implementation of two collision detection routines which uses SDFs to detect collisions with spheres and heightfields. The SDFs are stored using two alternative spatial data structures, a uniform grid and an octree. The implementations are compared against a triangle mesh representation. While there are limitations to the SDF representation, such as the need for high resolutions to capture fine details or that small features may become heavily distorted, the benefits of using SDFs include the ability to perform point to distance queries and provide a robust description of an object’s interior and exterior. The findings of this study showed that the SDF stored in a uniform grid demonstrated better performance in the benchmarks and was able to reproduce comparable data to the triangle mesh in the digging tests. These results indicate that the SDF representation could be a promising alternative to the triangle mesh representation. However, further development and research are required.
45

Algebraic Trait for Structurally Balanced Property of Node and Its Applications in System Behaviors

Du, Wen (Electrical engineering researcher) 12 1900 (has links)
This thesis targets at providing an algebraic method to indicate network behaviors. Furthermore, for a signed-average consensus problem of the system behaviors, event-triggering signed-average algorithms are designed to reduce the communication overheads. In Chapter 1, the background is introduced, and the problem is formulated. In Chapter 2, notations and basics of graph theory are presented. It is known that the terminal value of the system state is determined by the initial state, left eigenvector and right eigenvector associated with zero eigenvalue of the Laplacian matrix. Since there is no mathematical expression of right eigenvector, in Chapter 3, mathematical expression of right eigenvector is given. In Chapter 4, algebraic trait for structurally balanced property of a node is proposed. In Chapter 5, a method for characterization of collective behaviors under directed signed networks is developed. In Chapter 6, dynamic event-triggering signed-average algorithms are proposed and proved for the purpose of relieving the communication burden between agents. Chapter 7 summarizes the thesis and gives future directions.
46

THE IMPACT OF A BIDDER WORKSHOP ON SELF-EFFICACY

FOSTER, WARREN R. 12 July 2007 (has links)
No description available.
47

Detecting k-Balanced Trusted Cliques in Signed Social Networks

Hao, F., Yau, S.S., Min, Geyong, Yang, L.T. January 2014 (has links)
No / k-Clique detection enables computer scientists and sociologists to analyze social networks' latent structure and thus understand their structural and functional properties. However, the existing k-clique-detection approaches are not applicable to signed social networks directly because of positive and negative links. The authors' approach to detecting k-balanced trusted cliques in such networks bases the detection algorithm on formal context analysis. It constructs formal contexts using the modified adjacency matrix after converting a signed social network into an unweighted one. Experimental results demonstrate that their algorithm can efficiently identify the trusted cliques.
48

Optimal, Multiplierless Implementations of the Discrete Wavelet Transform for Image Compression Applications

Kotteri, Kishore 12 May 2004 (has links)
The use of the discrete wavelet transform (DWT) for the JPEG2000 image compression standard has sparked interest in the design of fast, efficient hardware implementations of the perfect reconstruction filter bank used for computing the DWT. The accuracy and efficiency with which the filter coefficients are quantized in a multiplierless implementation impacts the image compression and hardware performance of the filter bank. A high precision representation ensures good compression performance, but at the cost of increased hardware resources and processing time. Conversely, lower precision in the filter coefficients results in smaller, faster hardware, but at the cost of poor compression performance. In addition to filter coefficient quantization, the filter bank structure also determines critical hardware properties such as throughput and power consumption. This thesis first investigates filter coefficient quantization strategies and filter bank structures for the hardware implementation of the biorthogonal 9/7 wavelet filters in a traditional convolution-based filter bank. Two new filter bank properties—"no-distortion-mse" and "deviation-at-dc"—are identified as critical to compression performance, and two new "compensating" filter coefficient quantization methods are developed to minimize degradation of these properties. The results indicate that the best performance is obtained by using a cascade form for the filters with coefficients quantized using the "compensating zeros" technique. The hardware properties of this implementation are then improved by developing a cascade polyphase structure that increases throughput and decreases power consumption. Next, this thesis investigates implementations of the lifting structure—an orthogonal structure that is more robust to coefficient quantization than the traditional convolution-based filter bank in computing the DWT. Novel, optimal filter coefficient quantization techniques are developed for a rational and an irrational set of lifting coefficients. The results indicate that the best quantized lifting coefficient set is obtained by starting with the rational coefficient set and using a "lumped scaling" and "gain compensation" technique for coefficient quantization. Finally, the image compression properties and hardware properties of the convolution and lifting based DWT implementations are compared. Although the lifting structure requires fewer computations, the cascaded arrangement of the lifting filters requires significant hardware overhead. Consequently, the results depict that the convolution-based cascade polyphase structure (with "<i>z</i>₁-compensated" coefficients) gives the best performance in terms of image compression performance and hardware metrics like throughput, latency and power consumption. / Master of Science
49

Low Power Elliptic Curve Cryptography

Ozturk, Erdinc 04 May 2005 (has links)
This M.S. thesis introduces new modulus scaling techniques for transforming a class of primes into special forms which enable efficient arithmetic. The scaling technique may be used to improve multiplication and inversion in finite fields. We present an efficient inversion algorithm that utilizes the structure of a scaled modulus. Our inversion algorithm exhibits superior performance to the Euclidean algorithm and lends itself to efficient hardware implementation due to its simplicity. Using the scaled modulus technique and our specialized inversion algorithm we develop an elliptic curve processor architecture. The resulting architecture successfully utilizes redundant representation of elements in GF(p) and provides a low-power, high speed, and small footprint specialized elliptic curve implementation. We also introduce a unified Montgomery multiplier architecture working on the extension fields GF(p), GF(2) and GF(3). With the increasing research activity for identity based encryption schemes, there has been an increasing need for arithmetic operations in field GF(3). Since we based our research on low-power and small footprint applications, we designed a unified architecture rather than having a seperate hardware for GF{3}. To the best of our knowledge, this is the first time a unified architecture was built working on three different extension fields.
50

A contribution to the theory of graph homomorphisms and colorings / Une contribution à la théorie d' homomorphisme et de coloration des graphes

Sen, Sagnik 04 February 2014 (has links)
Dans cette thèse, nous considérons des questions relatives aux homomorphismes de quatre types distincts de graphes : les graphes orientés, les graphes orientables, les graphes 2-arête colorés et les graphes signés. Pour chacun des ces quatre types, nous cherchons à déterminer le nombre chromatique, le nombre de clique relatif et le nombre de clique absolu pour différentes familles de graphes planaires : les graphes planaires extérieurs, les graphes planaires extérieurs de maille fixée, les graphes planaires et les graphes planaires de maille fixée. Nous étudions également les étiquetages "2-dipath" et "L(p,q)" des graphes orientés et considérons les catégories des graphes orientables et des graphes signés. Nous étudions enfin les différentes relations pouvant exister entre ces quatre types d'homomorphismes de graphes. / An oriented graph is a directed graph with no cycle of length at most two. A homomorphism of an oriented graph to another oriented graph is an arc preserving vertex mapping. To push a vertex is to switch the direction of the arcs incident to it. An orientable graph is an equivalence class of oriented graph with respect to the push operation. An orientable graph [−→G] admits a homomorphism to an orientable graph [−→H] if an element of [−→G] admits a homomorphism to an element of [−→H]. A signified graph (G, Σ) is a graph whose edges are assigned either a positive sign or a negative sign, while Σ denotes the set of edges with negative signs assigned to them. A homomorphism of a signified graph to another signified graph is a vertex mapping such that the image of a positive edge is a positive edge and the image of a negative edge is a negative edge. A signed graph [G, Σ] admits a homomorphism to a signed graph [H, Λ] if an element of [G, Σ] admits a homomorphism to an element of [H, Λ]. The oriented chromatic number of an oriented graph −→G is the minimum order of an oriented graph −→H such that −→G admits a homomorphism to −→H. A set R of vertices of an oriented graph −→G is an oriented relative clique if no two vertices of R can have the same image under any homomorphism. The oriented relative clique number of an oriented graph −→G is the maximum order of an oriented relative clique of −→G. An oriented clique or an oclique is an oriented graph whose oriented chromatic number is equal to its order. The oriented absolute clique number of an oriented graph −→G is the maximum order of an oclique contained in −→G as a subgraph. The chromatic number, the relative chromatic number and the absolute chromatic number for orientable graphs, signified graphs and signed graphs are defined similarly. In this thesis we study the chromatic number, the relative clique number and the absolute clique number of the above mentioned four types of graphs. We specifically study these three parameters for the family of outerplanar graphs, of outerplanar graphs with given girth, of planar graphs and of planar graphs with given girth. We also try to investigate the relation between the four types of graphs and prove some results regarding that. In this thesis, we provide tight bounds for the absolute clique number of these families in all these four settings. We provide improved bounds for relative clique numbers for the same. For some of the cases we manage to provide improved bounds for the chromatic number as well. One of the most difficult results that we prove here is that the oriented absolute clique number of the family of planar graphs is at most 15. This result settles a conjecture made by Klostermeyer and MacGillivray in 2003. Using the same technique we manage to prove similar results for orientable planar graphs and signified planar graphs. We also prove that the signed chromatic number of triangle-free planar graphs is at most 25 using the discharging method. This also implies that the signified chromatic number of trianglefree planar graphs is at most 50 improving the previous upper bound. We also study the 2-dipath and oriented L(p, q)-labeling (labeling with a condition for distance one and two) for several families of planar graphs. It was not known if the categorical product of orientable graphs and of signed graphs exists. We prove both the existence and also provide formulas to construct them. Finally, we propose some conjectures and mention some future directions of works to conclude the thesis.

Page generated in 0.0304 seconds