• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabricación y Caracterización de dispositivos basados en Silicio Poroso sobre c-Si. Aplicaciones eléctricas, Ópticas y Térmicas.

Fonthal Rico, Faruk 25 October 2006 (has links)
Debido a las propiedades eléctricas y ópticas del Silicio Poroso (PS), este es un material ampliamente utilizado para el desarrollo de los dispositivos electrónicos. Por su compatibilidad con la tecnología de fabricación del Silicio, el Silicio Poroso es estudiado hoy en día en diferentes aplicaciones como: elementos activos en circuitos integrados, estructuras electro luminiscentes, dispositivos fotodetectores, dispositivos térmicos y muchas más.El trabajo que se ha desarrollado como tesis doctoral consiste en estudiar, fabricar y caracterizar estructuras basadas en PS en diferentes medios como el luminoso y el térmico, para 1) establecer sus diferentes comportamientos y 2) desarrollo de dispositivos basados en Silicio Poroso sobre silicio cristalino (PS/c-Si). Para cada grupo de muestras fabricadas se analizaron las propiedades eléctricas y ópticas en dos tipos de estructuras, Metal/PS/c-Si/Metal (diodo) y Metal/PS/Metal (resistor). Las propiedades eléctricas se han estudiado a partir de modelos DC, AC y térmicos. Las propiedades ópticas se han estudiado a partir de modelos de reflectividad normalizada para un rango espectral desde longitudes de onda cercanos al UV hasta longitudes cercanas al IR y modelos como fotodetectores bajos diferentes fuentes luminosas en el rango visible, cercano al UV y al IR. El capítulo uno se presenta la introducción de la tesis y los objetos a desarrollar. El capítulo dos detalla el proceso de fabricación y caracterización de las capas porosas, en donde se explican los pasos para la formación de las capas porosas desde la disolución química del silicio con el HF, cubeta de anodización y las condiciones que se necesitan para la formación de los poros. Se muestra también la caracterización morfológica en donde se puede observar las diferentes morfologías presentes en las muestras fabricadas para los dos tipos de silicio cristalino tipo - n y tipo - p. En el capítulo tres se explicar los diferentes métodos de metalización que se utilizan para depositar los metales a utilizar como contactos de capa gruesa ( screen printing) y capa delgada (evaporación) , además de las diferentes caracterizaciones eléctricas tanto en DC como en AC que se deben realizar para el estudio de los dispositivos fabricados. Se puede observar en este capítulo los diversos resultados de los comportamientos de las propiedades eléctricas en DC y en AC que presentan los dispositivos fabricados tanto resistores (metal/PS/metal) como diodos (metal/PS/c-Si/metal). También se puede determinar los mecanismos de conducción que controlan el contacto del metal con la capa porosa por medio de modelos eléctricos y ecuaciones que nos permiten determinar los diferentes parámetros físicos presentes en las estructuras estudiadas. Finalmente se muestra los resultados obtenidos como aplicación eléctrica para los termistores fabricados comparados con otros termistores fabricados con PS y otros materiales. El capítulo cuatro detalla las diferentes caracterizaciones de las propiedades ópticas presentes en las capas porosas como la absorción de la luz que está relacionada con la reflectividad normalizada, la detección de luz en el rango espectral y las fotocorrientes obtenidas a diferentes potencias ópticas. Se pueden observar las diferentes caracterizaciones realizadas para los dispositivos fabricados como aplicaciones ópticas, tanto las capas antireflectivas (ARC) para los diferentes substratos de silicio tipo - n y tipo - p comparándolas con otros trabajos publicados. Al igual que las ARC también se muestran los resultados obtenidos para la detección de luz con diferentes fuentes luminosas al igual para diferentes potencias ópticas. En el capítulo cinco se exponen las conclusiones finales obtenidas para el trabajo presentado en la tesis doctoral, en el capitulo seis se presentan las publicaciones obtenidas donde se han reportado los diferentes resultados presentados en la tesis doctoral y para finalizar las referencia utilizadas como base para realizar los estudios y los diferentes análisis.
2

Contribución al estudio del comportamiento de silicio poroso nano-estructurado en fluidos corporales simulados para el desarrollo de nuevos materiales biocompatibles y biodegradables

Pastor Galiano, Ester Lorena 07 May 2008 (has links)
En los últimos años el interés hacia el silicio poroso nanoestructurado para el desarrollo de nuevas aplicaciones biomédicas, como pueden ser: biosensores, liberación controlada de fármacos, etc., ha crecido exponencialmente. Los materiales ideales para este tipo de aplicaciones deben ser biocompatibles, biodegradables y biorreabsorbibles dependiendo de su función. el silicio mesoporoso es biodegradable, pero su biocompatibilidad depende de sus propiedades superficiales y de su estructura. Nuestro objeto de estudio ha sido el aumento de la biocompatibilidad del silicio poroso. En particular se ha investigado la interacción "in Vitro" de este material con fluido corporal simulado (FCS), que contiene una composición iónica casi idéntica a la del plasma sanguíneo, con el objetivo de conocer su comportamiento. Posteriormente, se han realizado dos tipos de tratamientos sobre el mismo: de oxidación (Si-O) y de derivatización con acetileno (Si-C), analizando su influencia en el comportamiento del material en FCS. Ambos procesos, ya conocidos en diversas aplicaciones del silicio poroso, han dado lugar a una estabilización en este medio. Además se ha demostrrado que la oxidación electroquímica en ácido fosfórico concentrado del silicio poroso con o sin derivatización, incrementa su bioactividad, asegurando la biocompatibilidad. Los resultados han permitido llegar a obtener capas de hasta 5 um de hidroxiapatito (componente mineral del hueso) sobre la superficie de las muestras, tras un mes de inmersión de las mismas en FCS, lo que es de gran interés en futuras aplicaciones biomédicas que tengan como base este material. / Pastor Galiano, EL. (2008). Contribución al estudio del comportamiento de silicio poroso nano-estructurado en fluidos corporales simulados para el desarrollo de nuevos materiales biocompatibles y biodegradables [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1985
3

Desarrollo de biosensores fotónicos basados en membranas de silicio poroso

Martín Sánchez, David 02 September 2019 (has links)
[ES] El desarrollo de los biosensores está permitiendo llevar a cabo análisis bioquímicos cada vez más rápidos, de manera mucho más sencilla y utilizando una menor cantidad de muestra. Esto está dando lugar a aplicaciones en las que se monitorizan parámetros de manera continua y autónoma, aumentando la eficiencia y reduciendo los costes. El tema principal de esta Tesis ha sido el desarrollo y la evaluación de biosensores que se basan en técnicas de transducción óptica, fabricados en silicio poroso, un material nanoestructurado que puede llegar a alcanzar una gran sensibilidad. El trabajo ha consistido en el estudio de la fabricación y la caracterización de membranas de silicio poroso obtenidas a partir de substratos tipo p de baja resistividad. Para ello se ha desarrollado un modelo matemático realista que permite simular el comportamiento del transductor y calcular sus parámetros experimentales. Gracias a esto, se han estudiado propiedades del material como el efecto térmico, llevando a caracterizar el efecto termo-óptico del silicio poroso en el rango infrarrojo del espectro. Además, se ha analizado la infiltración de la muestra en el transductor con el objetivo de mejorar su funcionamiento. Por este motivo, se han examinado diferentes morfologías de poros y se ha implementado un flujo activo durante el sensado, en el cual la sustancia a analizar fluye a través de la membrana porosa, resolviendo problemas de rellenado del sensor y mezclado con otras sustancias. / [CA] El desenvolupament dels biosensors està permetent realitzar anàlisis bioquímics cada vegada més ràpids, de manera molt més senzilla i utilitzant una menor quantitat de mostra. Això està donant lloc a aplicacions en les quals es monitoritzen paràmetres de manera contínua i autònoma, augmentant l'eficiència i reduint els costos. El tema principal d'aquesta Tesis ha sigut el desenvolupament i l'avaluació de biosensors basats en tècniques de transducció òptica, fabricats en silici porós, un material nanoestructurat que pot arribar a aconseguir una gran sensibilitat. El treball ha consistit en l'estudi de la fabricació i la caracterització de membranes de silici porós obtingudes a partir de substrats tipus p de baixa resistivitat. Per a fer-ho, s'ha desenvolupat un model matemàtic realista que permet simular el comportament del transductor i calcular els seus paràmetres experimentals. Gràcies a això, s'han estudiat propietats del material com l'efecte tèrmic, el que ha permés caracteritzar l'efecte termo-òptic del silici porós en el rang infraroig de l'espectre. A més, s'ha analitzat la infiltració de la mostra en el transductor amb l'objectiu de millorar el seu funcionament. Per aquest motiu, s'han examinat diferents morfologies de porus i s'ha implementat un flux actiu durant el sensat, en el qual la substància a analitzar fluïx a través de la membrana porosa, resolent problemes d'ompliment del sensor i mesclat amb altres substàncies. / [EN] The development of biosensors is leading to faster and simpler analyses of biochemical samples, using them in lower quantities. Over the last years, these advances have allowed the emergence of applications where parameters can be monitored continuously and autonomously, increasing the efficiency and reducing the costs. This Thesis has focused on the development and evaluation of biosensors based on optical transducers, which are fabricated with porous silicon, a nanostructured material that is able to reach a high sensitivity. In this work, the fabrication and characterization of porous silicon membranes using heavily doped p-type silicon wafers have been studied. A realistic mathematical model has been developed in order to simulate the transducer's behavior and calculate the experimental parameters. This has led to the study of physical properties such as the thermal effect, where we were able to characterize the thermo-optic coefficient in the near-infrared range. Moreover, the penetration of the sample into the structure has been analyzed. For this purpose, several pore morphologies were examined and an active flow has been implemented during the sensing experiments, where the substance of interest flows through the porous membrane, to solve problems such as the partial filling of the sensor or the mixture of different substances during the experiments. / Martín Sánchez, D. (2019). Desarrollo de biosensores fotónicos basados en membranas de silicio poroso [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/125695
4

Development and Optimization of Experimental Biosensing Protocols Using Porous Optical Transducers

Martínez Pérez, Paula 02 September 2021 (has links)
[ES] Los biosensores son dispositivos analíticos con aplicabilidad en diferentes campos y con numerosas ventajas frente a otros métodos analíticos convencionales, como son el uso de pequeños volúmenes de muestra y reactivos, su sensibilidad y su rápida respuesta, sin necesidad de pretratamiento de la muestra, equipos caros o personal especializado. Sin embargo, se trata de un campo de investigación relativamente nuevo en el que todavía queda mucho camino por andar. Esta Tesis doctoral pretende aportar un granito de arena a este campo de conocimiento mediante el estudio del potencial de diferentes materiales porosos como transductores para el desarrollo de biosensores ópticos con respuesta en tiempo real y sin marcajes. Los materiales propuestos van desde aquellos artificialmente sintetizados, como silicio poroso (SiP), nanofibras (NFs) poliméricas o membranas poliméricas comerciales, hasta materiales naturales con propiedades fotónicas que todavía no habían sido explotadas para el sensado, como son los exoesqueletos de biosílice de diatomeas. Todos ellos tienen en común la simplicidad en su obtención, evitando costosos y laboriosos procesos de nanofabricación. Para su estudio, se analizará su respuesta óptica y, en aquellos casos en los que ésta permita llevar a cabo experimentos de detección, se desarrollarán estrategias para su biofuncionalización y su implementación en experimentos de biosensado. En el caso del SiP y las NFs se han optimizado los parámetros de fabricación para obtener una respuesta óptica adecuada que permita su interrogación. A continuación, se ha llevado a cabo su biofuncionalización empleando métodos covalentes y no covalentes, así como diferentes bioreceptores (aptámeros de ADN y anticuerpos) para estudiar su potencial y sus limitaciones como biosensores. En el caso de las membranas comerciales y el exoesqueleto de sílice de diatomeas, se ha caracterizado su respuesta óptica y se han llevado a cabo experimentos de sensado de índice de refracción para estudiar su sensibilidad. Así mismo, se ha desarrollado un método de funcionalización de la superficie del exoesqueleto de diatomeas basado en el uso de polielectrolitos catiónicos. Como resultado, se ha demostrado el potencial tanto de NFs para el desarrollo de biosensores, como el de membranas comerciales para sensores cuya aplicación no requiera una elevada sensibilidad pero sí un bajo coste. Además, se ha puesto de manifiesto el gran potencial del exoesqueleto de diatomeas para el desarrollo de sensores basados en su respuesta óptica. Por el contrario, las limitaciones encontradas en el desarrollo de biosensores basados en SiP han evidenciado la necesidad de un estudio riguroso y la optimización de la estructura de materiales porosos previamente a ser usados en (bio)sensado. / [CA] Els biosensors són dispositius analítics amb aplicabilitat en diferents camps i amb nombrosos avantatges enfront d'altres mètodes analítics convencionals, com són l'ús de xicotets volums de mostra i reactius, la seua sensibilitat i la seua ràpida resposta, sense necessitat de pretractament de la mostra, equips cars o personal especialitzat. No obstant això, es tracta d'un camp d'investigació relativament nou en el qual encara queda molt camí per fer. Aquesta Tesi doctoral pretén aportar el seu òbol a aquest camp de coneixement mitjançant l'estudi del potencial de diferents materials porosos com a transductors per al desenvolupament de biosensors òptics amb resposta en temps real i sense marcatges. Els materials proposats van des d'aquells artificialment sintetitzats, com a silici porós (SiP), nanofibras (NFs) polimèriques o membranes polimèriques comercials, fins a materials naturals amb propietats fotòniques que encara no havien sigut explotades per al sensat, com són els exoesquelets de biosílice de diatomees. Tots ells tenen en comú la simplicitat en la seua obtenció, evitant costosos i laboriosos processos de nanofabricació. Per al seu estudi, s'analitzarà la seua resposta òptica i, en aquells casos en els quals aquesta permeta dur a terme experiments de detecció, es desenvoluparan estratègies per a la seua biofuncionalizació i la seua implementació en experiments de biosensat. En el cas del SiP i les NFs s'han optimitzat els paràmetres de fabricació per a obtenir una resposta òptica adequada que permeta la seua interrogació. A continuació, s'ha dut a terme la seua biofuncionalizació emprant mètodes covalents i no covalents, així com diferents bioreceptors (aptàmers d'ADN i anticossos) per a estudiar el seu potencial i les seues limitacions com a biosensors. En el cas de les membranes comercials i l'exoesquelet de sílice de diatomees, s'ha caracteritzat la seua resposta òptica i s'han dut a terme experiments de sensat d'índex de refracció per a estudiar la seua sensibilitat. Així mateix, s'ha desenvolupat un mètode de funcionalizació de la superfície de l'exoesquelet de diatomees basat en l'ús de polielectròlits catiònics. Com a resultat, s'ha demostrat el potencial tant de NFs per al desenvolupament de biosensors, com el de membranes comercials per a sensors amb una aplicació que no requerisca una elevada sensibilitat però sí un baix cost. A més, s'ha posat de manifest el gran potencial de l'exoesquelet de diatomees per al desenvolupament de sensors basats en la seua resposta òptica. Per contra, les limitacions trobades en el desenvolupament de biosensors basats en SiP han evidenciat la necessitat d'un estudi rigorós i l'optimització de l'estructura dels materials porosos prèviament a ser usats en (bio)sensat. / [EN] Biosensors are analytical devices with application in diverse fields and with several advantages relative to other conventional methods, such as the use of small volumes of sample and reagents, their sensitivity and their fast response, without the need of the sample pretreatment, expensive equipments or specialised technicians. Nevertheless, this is a relatively new research field in which there is a long way to go yet. This doctoral Thesis aims at doing its bit to this field of knowledge by studying the potential of different porous materials as transducers for the development of real-time and label-free optical biosensors. The proposed materials range from those artificially synthesised, such as porous silicon (pSi), polymeric nanofibres (NFs) or commercial polymeric membranes, to natural materials with photonic properties that had not been exploited for sensing yet, such as biosilica exoskeletons of diatoms. All of them have in common its simple production, avoiding expensive and laborious nanofabrication processes. For their study, their optical response will be analysed and, in those cases in which such optical response allows performing detection experiments, strategies for their biofunctionalisation and their implementation in biosensing experiments will be developed as well. Regarding pSi and NFs, the fabrication parameters were optimised to get a suitable optical response for their interrogation. Afterwards, their surface functionalisation was carried out by covalent and non-covalent methods, as well as different bioreceptors (DNA aptamers and antibodies), to study their potential and their constraints as biosensors. Concerning commercial membranes and the biosilica exoskeleton of diatoms, their optical response was characterised and refractive index sensing experiments were carried out to study their sensitivity. Additionally, a biofunctionalisation method for the surface of the diatoms exoskeleton was developed based on the use of cationic polyelectrolytes. As a result, it was demonstrated the potential of NFs for the development of biosensors, as well as the potential of commercial membranes for developing sensors for an application that does not require a high sensitivity but a low cost. Furthermore, the great potential of biosilica exoskeleton of diatoms for the development of sensors based on their optical response has been revealed. By contrast, the constraints found in the development of pSi illustrate the importance of an accurate study and optimisation of porous materials structure before using them for (bio)sensing. / Martínez Pérez, P. (2021). Development and Optimization of Experimental Biosensing Protocols Using Porous Optical Transducers [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172541

Page generated in 0.0433 seconds