• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 9
  • 2
  • Tagged with
  • 37
  • 37
  • 22
  • 22
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Étude en dynamique moléculaire par approximation des liaisons fortes de l'influence des défauts ponctuels dans la relaxation du silicium amorphe

Urli, Xavier January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
32

Etude des nanofils de silicium et de leur intégration dans des systèmes de récupération d'énergie photovoltaïque / Study of silicon nanowires and their integration into photovoltaic systems

Kohen, David 19 September 2012 (has links)
L'objectif de cette thèse porte sur la fabrication et la caractérisation de cellules solaires à jonction radiale à base d'assemblée de nanofils de silicium cristallin. Une étude sur la croissance des nanofils à partir de deux catalyseurs métalliques (cuivre et aluminium) dans une machine de dépôt chimique en phase vapeur (CVD) à pression réduite est présentée. L'influence des conditions de croissance sur la morphologie, le dopage et la contamination des nanofils par le catalyseur est analysée par des mesures électriques, chimiques (SIMS, Auger) et structurales (SEM, TEM, Raman). Le cuivre est utilisé pour la fabrication d'une cellule solaire avec des nanofils de type p et une jonction radiale créée avec du silicium amorphe de type n. Les performances photovoltaïques de la cellule solaire sont ensuite mesurées et interprétées. Un rendement de conversion de 5% est mesuré sur une cellule avec des nanofils de hauteur 1,5µm. / The objective of this PhD is the study of the fabrication and characterization of radial junction solar cells based on crystalline silicon nanowires. A study of the nanowire growth with two metallic catalysts (copper and aluminum) in a reduced pressure chemical vapor deposition system is presented. The influence of the growth conditions on the morphology, doping density and catalyst contamination inside the nanowires is analyzed by electrical, chemical (SIMS) and structural (SEM, TEM, Raman) characterizations. Copper catalyst is used to fabricate a solar cell with p-type nanowire with a radial junction created by n-type amorphous silicon (a-Si:H) deposition. Photovoltaic performances are measured and interpreted. A conversion efficiency of 5% is measured on a solar cell with 1.5µm high silicon nanowires.
33

Analyse SAXS de traces ioniques causées par bombardements d’ions d’or dans des échantillons de silicium amorphe

Codsi, Stéphanie 08 1900 (has links)
Le mémoire qui suit vise à vérifier si la formation de traces latentes par des ions lourds et rapides passe par une phase liquide. Compte tenu du fait que le processus de formation des traces est trop rapide pour être directement étudié, notre expérience vise à mesurer après coup des éléments qui seraient indicateurs d’une fusion. Dans cette optique, nous étudierons s’il y a eu une redistribution d’ions d’or (initialement présents par dopage dans des échantillons de silicium amorphe) à la suite de l’irradiation des échantillons. Cette redistribution d’or s’expliquerait par le phénomène de raffinage de la zone fondue, qui surviendrait pendant une hausse de température lors de la création de traces ioniques latentes prévue par le modèle théorique du pic thermique. Les échantillons étudiés sont des membranes de silicium amorphes de 2 µm d’épaisseur, dopés à l’or selon différents pourcentages (pur, moyen et élevé) et irradiés avec des ions lourds rapides d’or à 1,1 GeV ou d’argent à 75 MeV. Aucune image SAXS n’a pu révéler la présence de traces ioniques latentes pour les échantillons irradiés par des ions argent à 75 MeV. Bien que le pouvoir d’arrêt de ceux-ci est bas (9,5 keV/nm) [1], il dépasse tout de même le seuil observé pour plusieurs autres phénomènes associés avec des traces. [2] [3] Nous aurions donc trouvé un régime où il y a des effets causés par des ions lourds et rapides, mais sans signature visible en SAXS. À l’inverse, les échantillons irradiés d’ions d’or ont démontré la présence de traces ioniques latentes via des images SAXS. Ces images démontrent un motif de diffusion caractéristique à des traces de type core-shell. Toutefois, ces résultats ne démontrent pas de différences de ségrégation d’or selon le niveau de dopage initial. Tous les échantillons (dopage pur, moyen et élevé) présentent un noyau de rayon de (2,5 ± 0,1)nm et un rayon total de (9,9 ± 0,5)nm, ce qui rejoint des valeurs similaires à ceux obtenus dans la littérature. [4] Par contre, l’absence de différence selon le dopage pourrait s’expliquer par le fait que la resolidification après la fusion serait trop rapide au point où l’or subirait du solute trapping qui empêcherait la ségrégation. Une autre explication possible serait qu’il n’y aurait pas de fusion du tout lors de la formation de la trace. En premier lieu, ce mémoire traite de toutes les étapes nécessaires à la conception des échantillons, soit leur amorphisation, l’implantation d’impuretés d’or, puis l’irradiation. Deux catégories d’échantillons sont abordées : les échantillons de validation, puis les véritables échantillons qui ont été étudiés. Par la suite, ce mémoire aborde la détection des traces ioniques latentes, d’abord avec un AFM (qui s’est avéré insuffisant), puis avec des mesures SAXS. Finalement, un code théorique pour reproduire les mesures expérimentales obtenues a été développé en se basant sur la littérature. Il génère des résultats numériques prometteurs par rapport aux données expérimentales obtenues. / The following thesis aims to verify whether the formation of latent traces by heavy and fast ions passes through a liquid phase. Given the fact that the process of trace formation is too fast to be directly studied, our experience aims to measure after the fact elements that would be indicative of a merger. In this context, we will study whether there has been a redistribution of gold ions (initially present by doping in amorphous silicon samples) following the irradiation of the samples. This redistribution of gold could be explained by the phenomenon of refining the melted zone, which would occur during a rise in temperature during the creation of latent ionic traces predicted by the theoretical model of the thermal peak. The samples studied are amorphous silicon membranes of 2 µm in thickness, doped with gold at different percentages (pure, medium and high) and irradiated with fast heavy ions of gold at 1.1 GeV or silver at 75 MeV. No SAXS image was able to reveal the presence of latent ionic traces for samples irradiated with silver ions at 75 MeV. Although the stopping power of the latter is low (9.5 keV/nm), it exceeds the threshold observed for several other phenomena associated with traces. [2] [3] We would therefore have found a regime where there are effects of heavy and fast ions, but without a visible signature in SAXS. In contrast, irradiated samples of gold ions demonstrated the presence of latent ionic traces via SAXS images. These images demonstrate a diffusion pattern characteristic of core-shell type traces. However, these results do not show differences in gold segregation according to the initial doping level. All samples (pure, medium and high doping) have a core radius of (2.5 ± 0.1) nm and a total radius of (9.9 ± 0.5) nm, which are values similar to those obtained in the literature. [4] On the other hand, the absence of a difference according to the doping could be explained by the fact that the resolidification after the fusion would be too fast, to the point where the gold would undergo solute trapping which would prevent the segregation. Another possible explanation would be that there would be no fusion at all during the formation of the trace. First of all, this thesis deals with all the steps necessary for the design of the samples, namely their amorphization, the implantation of gold impurities, then the irradiation. Two categories of samples are discussed: the validation samples, then the actual samples that were studied. Subsequently, this thesis addresses the detection of latent ion traces, first with an AFM (which proved to be insufficient), then with SAXS measurements. Finally, a theoretical code to reproduce the experimental measurements obtained was developed based on the literature. It generates promising numerical results compared to the experimental data obtained.
34

Amélioration de la passivation de cellules solaires de silicium à hétérojonction grâce à l’implantation ionique et aux recuits thermiques / Robust passivation of silicon heterojunction solar cells thanks to the ion implantation and thermal annealing

Defresne, Alice 07 December 2016 (has links)
Les cellules solaires à hétérojonction a-Si:H/c-Si atteignent un rendement record de 24.7% en laboratoire. La passivation de la surface du c-Si est la clé pour obtenir de hauts rendements. En effet, la brusque discontinuité de la structure cristalline à l'interface amorphe/cristal induit une forte densité de liaisons pendantes créant une grande densité de défauts dans la bande interdite. Ces défauts sont des centres de recombinaison pour les paires électron-trou photogénérées dans le c-Si. Différentes couches diélectriques peuvent être utilisées pour passiver les wafers dopés n et dopés p : (i) le SiO₂ réalisé par croissance thermique, (ii) l’Al₂O₃ déposé par ALD, (iii) le a-SiNₓ:H et l’a-Si:H déposés par PECVD. La couche de passivation la plus polyvalente est a Si:H puisqu’elle peut passiver aussi bien les wafers dopés n que ceux dopés p. De plus sa production est peu coûteuse en énergie car sa croissance est réalisée à une température d’environ 200°C. L’inconvénient de cette couche de passivation est que lorsqu’elle est dopée p elle ne supporte pas des températures supérieures à 200°C, en raison de l’exodiffusion des atomes d’hydrogène qu’elle contient. Cependant, afin d'avoir un bon contact électrique, TCO et électrodes métalliques, il est souhaitable de recuire à plus haute température (entre 300°C et 500°C). Nous avons implanté des ions Argon de façon contrôlée dans des précurseurs de cellules solaires à des énergies comprises entre 1 et 30 keV, pour contrôler la profondeur à laquelle nous créons les défauts. En variant la fluence entre 10¹² Ar.cm⁻² et 10¹⁵ Ar.cm⁻² nous contrôlons la concentration de défauts créés. Nous montrons qu’une implantation à une énergie de 5 keV avec une fluence de 10¹⁵ Ar.cm⁻² n’est pas suffisante pour endommager l’interface a-Si:H/c-Si. La durée de vie effective des porteurs minoritaires mesurée par photoconductance (temps de décroissance de la photoconductivité) passe de 3 ms à 2,9 ms après implantation. En revanche les implantations à 10 keV, 10¹⁴ Ar.cm⁻² ou à 17 keV, 10¹² Ar.cm⁻² sont suffisantes pour dégrader la durée de vie effective de plus de 85%. Suite aux implantations les cellules solaires ont subi des recuits sous atmosphère contrôlée à différentes températures et ce jusqu’à 420°C. Nous avons découvert que le recuit permet de guérir les défauts introduits par l’implantation. Mais surtout, dans certains cas, d’obtenir des durées de vie après implantation et recuit supérieures aux durées de vies initiales. En combinant l’implantation ionique et les recuits, nous conservons de bonnes durées de vies effectives des porteurs de charges (supérieures à 2 ms) même avec des recuits jusqu’à 380°C. Nous avons utilisé une grande variété de techniques telles que la photoconductance, la photoluminescence, l’ellipsométrie spectroscopique, la microscopie électronique en transmission, la Spectroscopie de Masse d’Ions Secondaires, la spectroscopie Raman et l’exodiffusion de l’hydrogène pour caractériser et analyser l’ensemble des résultats et phénomènes physico-chimique intervenant dans la modification des précurseur de cellules solaires. Nous discutons ici de plusieurs effets tels que l’augmentation de la durée de vie et la tenue en température par la conservation de l’hydrogène dans la couche de silicium amorphe et ceci même après les recuits. Cette conservation peut s’expliquer par l’augmentation du nombre de liaisons Si-H au sein du silicium amorphe et par la formation de cavités lors de l’implantation. Durant les recuits l’hydrogène qui diffuse est piégé puis libéré par les cavités et/ou les liaisons pendantes, ce qui limite son exo-diffusion et le rend de nouveau disponible pour la passivation des liaisons pendantes. / A-Si:H/c-Si heterojunction solar cells have reached record efficiencies of 24.7%. The passivation of c-Si is the key to achieve a high-efficiency. Indeed, the abrupt discontinuity in the crystal structure at the amorphous/crystal interface induces a high density of dangling bonds creating a high density of defects in the band gap. These defects act as recombination centers for electron-hole pairs photogenerated in c-Si. Several dielectric layers can be used to passivate n-type and p-type wafers: (i) SiO₂ produced by thermal growth, (ii) Al₂O₃ deposited by ALD, (iii) a-SiNₓ:H and a-Si:H deposited by PECVD. The most versatile passivation layer is a-Si: H because it is effective for both p-type and n-type wafers. In addition, this process has a low thermal budget since the deposition is made at 200°C. The drawback of this passivation layer, in particular when p-type doped, is that it does not withstand temperatures above 200°C. However, in order to have a good electrical contact, TCO and metal electrodes require high temperature annealing (between 300°C and 500°C).We implanted Argon ions in solar cell precursors with energies between 1 and 30 keV, which allows to control the depth to which we are creating defects. By varying the fluence between 10¹² Ar.cm⁻² and 10¹⁵ Ar.cm⁻² we control the concentration of defects. We show that implantation with an energy of 5 keV and a fluence of 10¹⁵ Ar.cm⁻² is not sufficient to damage the a-Si:H/c-Si interface. The effective lifetime of the minority charge carriers, measured using a photoconductance technique (decay time of photoconductivity), decreases only from 3 ms to 2.9 ms after implantation. On the other hand the implantations at 10 keV, 10¹⁴ Ar.cm⁻² or at 17 keV, 10¹² Ar.cm⁻² are sufficient to degrade the effective lifetime by more than 85%.Following implantation the solar cells have been annealed in a controlled atmosphere at different temperatures and this up to 420°C. We show that annealing can heal the implantation defects. Moreover, under certain conditions, we obtain lifetimes after implantation and annealing greater than the initial effective lifetime. Combining ion implantation and annealing leads to robust passivation with effective carrier lifetimes above 2 ms even after annealing our solar cell precursors at 380°C. We used a large variety of techniques such as photoconductance, photoluminescence, spectroscopic ellipsometry, Transmission Electron Microscopy, Secondary Ion Mass Spectrometry, Raman spectroscopy and hydrogen exodiffusion to characterize and analyze the physico-chemical phenomena involved in the modification of solar cells precursors. We discuss here several effects such as the increase of the effective lifetime and the temperature robustness by the preservation of hydrogen in amorphous silicon layer and this even after annealing. This hydrogen preservation can be explained by the increase of the number of Si–H bonds in amorphous silicon and the formation of cavities during implantation. In the course of annealing the hydrogen which diffuses is trapped and then released by cavities and dangling bonds, which limits its exodiffusion and makes it available for dangling bonds passivation.
35

Silicium de type n pour cellules à hétérojonctions : caractérisations et modélisations / N type silicon for heterojunctions photovoltaic solar cells : characterizations and modeling

Favre, Wilfried 30 September 2011 (has links)
Les cellules à hétérojonctions de silicium fabriquées par croissance de couches minces de silicium amorphe hydrogéné (a-Si :H) à basse température sur des substrats de silicium cristallin (c-Si) peuvent atteindre des rendements de conversion photovoltaïque élevés (η=23 % démontré). Les efforts de recherche ayant principalement été orientés vers le cristallin de type p jusqu'à présent en France, ce travail s'attache à l'étude du type n pour d'une part déterminer les performances auxquelles s'attendre avec cette nouvelle filière et d'autre part les améliorer. Pour cela, nous avons mis en œuvre des techniques de caractérisation des matériaux composant la structure et de l’interface (a-Si :H/c-Si) couplées à des outils de simulations numériques afin mieux comprendre les phénomènes de transport électronique. Nous nous sommes également intéressés aux cellules à hétérojonctions avec substrats de silicium multicristallin de type n, le silicium multicristallin étant le matériau le plus répandu actuellement dans la fabrication des cellules photovoltaïques. / In this thesis we focus on the silicon heterostructure combining thin films amorphous silicon (a-Si :H) deposited at low temperature on crystalline silicon (c-Si) substrates. We study the different materials and the interface between them through both characterizations, modelling and numerical simulations. The goal is to better understand the influence of the different parameters (doping level, defects density, band offset, ...) on the photovoltaic solar cell's performances in order to get them improved. Structures with multicrystalline silicon substrates are also studied.
36

Élaboration de carbure de silicium amorphe hydrogéné par PECVD : Optimisation des propriétés optiques, structurales et passivantes pour des applications photovoltaïques / Study of amorphous hydrogenated silicon carbide deposited by PECVD technique : Optimization of optical, structural and passivating properties for photovoltaic applications

Gaufrès, Aurélien 14 January 2014 (has links)
Notre étude concerne la mise en place et le développement de dépôts de carbure de silicium amorphe hydrogéné (a-SiCx:H) à basse température (370°C), par voie PECVD, sur un réacteur PECVD semi-industriel à faible fréquence (440 kHz). Les propriétés chimiques, optiques et de passivation de surface des couches déposées sont analysées et l’impact du changement des débits de gaz précurseurs (silane et méthane) est aussi étudié. La possibilité d’utiliser le a-SiCx:H comme couche anti-reflet en face avant d’une cellule solaire est envisagée. Bien que l’indice de réfraction d’une couche riche en carbone soit en accord avec la condition de lame quart-d’onde requise pour une couche anti-reflet, le coefficient d’extinction est trop élevé en raison de la proportion significative de silicium dans la couche. Cette absorption peut être atténuée par l’incorporation d’azote dans la couche (a-SiCxNy:H). En revanche, la passivation de surface s’améliore lorsque la quantité de silane augmente. La plus faible vitesse de recombinaison de surface atteinte sur les échantillons après dépôt est de 10 cm.s. / Our study deals with the deposition of amorphous hydrogenated silicon carbide (a- SiCx:H) at low temperature (370°C), by PECVD technique, using a semi-industrial lowfrequency PECVD reactor (440 kHz). The deposited films are analyzed for chemical, optical and surface passivation properties, and the impact of the gas flow parameters (silane and methane) is studied. The possible use of a-SiCx:H as an antireflective coating at the front side of solar cells is investigated. Although the refractive index for high carbon concentration could be in agreement with the demand of quarter-wave layer for antireflective coating, the extinction coefficient remains too high due to a significant silicon content in the material. This absorption can be attenuated by incorporating nitrogen in the layer. However, the surface passivation improves with the silane proportion. The lowest surface recombination velocity of an as-deposited samples is about 10 cm.s.
37

Experimental characterization of heat transfer in nanostructured silicon-based materials / Caractérisation expérimentale du transfère thermique dans les matériaux nanostructurés à base de silicium

Massoud, Mouhannad 20 June 2016 (has links)
Ce mémoire de thèse aborde la caractérisation expérimentale du transfert thermique à l’échelle nanométrique dans des matériaux compatibles avec les procédés de la micro-électronique. Pour cela deux techniques de caractérisation sont appliquées chacune à deux différents systèmes, le silicium mésoporeux irradié et les membranes de silicium suspendues. La première technique de caractérisation est la thermométrie micro-Raman. La puissance du laser chauffe l'échantillon exposé. La détermination de la conductivité thermique nécessite la modélisation de la source de chaleur par la méthode des éléments finis. Dans les cas considérés la modélisation de la source de chaleur repose sur différents paramètres qui doivent être soigneusement déterminés. La seconde technique de caractérisation est la microscopie à sonde locale (d’acronyme anglais SThM), basée sur le principe de la microscopie à force atomique (d’acronyme anglais AFM). Utilisée en mode actif, la sonde AFM est remplacée par une sonde résistive de type Wollaston qui est chauffée par effet Joule. Utilisée en mode AFM contact, cette technique permet une excitation thermique locale du matériau étudié. La détermination de la conductivité thermique nécessite l'analyse de la réponse thermique de la sonde au moyen d'échantillons d'étalonnage et également via la modélisation dans le cas des géométries complexes. L'effet de la position de la pointe sur le transfert de chaleur entre la pointe et l'échantillon est étudié. Une nouvelle méthode de découplage entre le transfert de chaleur entre la pointe et l'échantillon, respectivement à travers l'air et au contact, est proposée pour la détermination de la conductivité thermique des géométries complexes. Les résultats obtenus avec les deux techniques pour les échantillons de silicium mésoporeux irradiés à l’aide d’ions lourds dans le régime électronique sont en bon accord. Ils montrent la dégradation de la conductivité thermique du silicium mésoporeux suite à une augmentation dans la phase d’amorphe lorsque la dose d’irradiation croît. Les résultats obtenus sur les membranes de silicium suspendues montrent une réduction de la conductivité thermique de plus de 50 % par rapport au silicium massif. Lorsque la membrane est perforée périodiquement afin de réaliser une structure phononique de période inférieure à 100 nm, cette réduction est approximativement d’un ordre de grandeur. Un chapitre introduisant un matériau prometteur à base de silicium pour observer des effets de cohérence phononique conclut le manuscrit. / This PhD thesis deals with the experimental characterization of heat transfer at the nanoscale in materials compatible with microelectronic processes. Two characterization techniques are applied to two different systems, irradiated mesoporous silicon and suspended silicon membranes. The first characterization technique is micro-Raman thermometry. The laser power heats up the exposed sample. The determination of the thermal conductivity requires the modeling of the heat source using finite element simulations. The modeling of the heat source relies on different parameters that should be carefully determined. The second characterization technique is Scanning Thermal Microscopy (SThM), an Atomic Force Microscopy (AFM)-based technique. Operated in its active mode, the AFM probe is replaced by a resistive Wollaston probe that is heated by Joule heating. Used in AFM contact mode, this technique allows a local thermal excitation of the studied material. The determination of the thermal conductivity requires the analysis of the thermal response of the probe using calibration samples and modeling when dealing with complicated geometries. The effect of the tip position on heat transfer between the tip and the sample is studied. A new method decoupling the heat transfer between the tip and the sample, at the contact and through air, is proposed for determining the thermal conductivity of complicated geometries. The results obtained from the two techniques on irradiated mesoporous silicon samples using heavy ions in the electronic regime are in good agreement. They show a degradation of the thermal conductivity of mesoporous silicon due to the increase in the amorphous phase while increasing the ion fluence. The results obtained on suspended silicon membrane strips show a decrease in the thermal conductivity of more than 50 % in comparison to bulk silicon. When perforated into a phononic structure of sub-100 nm period, the membrane thermal conductivity is about one order of magnitude lower than the bulk. A chapter introducing a promising silicon-based material for the evidence of phonon coherence concludes the manuscript.

Page generated in 0.0601 seconds