• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 68
  • 31
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Vybraní hlavonožci (Cephalopoda) ordoviku pražské pánve a Baltiky(Estonsko a Švédsko): taxonomie, paleobiogeografie a paleoekologie / Selected cephalopods from the Ordovician of the Prague Basin (Bohemia) and Baltica (Estonia and Sweden): taxonomy, paleobiogeography and paleoecology

Aubrechtová, Martina January 2018 (has links)
This dissertation thesis is a summary of five studies published in peer- reviewed, impacted scientific journals. All of the publications are taxonomic revisions of previously unknown or little known collections of fossil cephalopods from the Early Paleozoic strata of Bohemia, Estonia and Sweden. Paleogeogra- phical and stratigraphical distributions of the respective taxa were summarized, refined and compared with contemporary fossil assemblages known from other regions. Implications on the paleoecology of the cephalopods and original envi- ronmental conditions were made. The text of the thesis is divided into three main parts. In the first part, the morphology of cephalopods is explained, stressing out the most important diagnostic characters used for their descriptions. The current systematics of the Cephalopoda is overviewed and the main cephalopod groups during the Ordovician are briefly introduced. The second part of the thesis describes the geological development and settings of the regions, from which the studied fossil cephalopods originate. The third and final part of the thesis provides a discussion and interpretation of the results of the published studies in the context of the previously published research. The genus Bactroceras Holm, 1898 and some members of the order Litui- tida were studied...
62

Metallogeny of a Volcanogenic Gold Deposit, Cape St. John Group, Tilt Cove, Newfoundland

Hurley, Tracy 04 1900 (has links)
<p> The "B" horizon at Tilt Cove occurs in subaqueous mafic volcanics near the base of the Silurian Cape St. John Group. It is 3 metres below a well-banded oxide iron formation ("A" horizon). </p> <p> Mineralization in the "B" horizon is analogous to that of the East Mine in that it is volcanogenic and has resulted in extensive chloritization of the footwall rocks, and in the deposition of banded sulphides or the replacement of the existing mafic volcanics by sulphides. There are differences in the geochemistry mineral textures and mineral types. The East Mine host volcanics are alkali depleted basaltic komatiites to magnesium theleiites. The horizon host volcanics are spillitized magnesium tholeiites. Samples of ore from the East Mine show well-developed colloform and framboidal textures. Pyrite, magnetite, hematite and chalcopyrite are the dominant minerals with minor sphalerite and accessory covellite. Samples from the horizon show relict colloform textures and framboids with less internal structure due to overgrowths. Atoll textures indicating extensive replacement are common. Pyrite is the dominant sulphide followed by sphalerite, chalcopyrite, accessory covellite and gold. The chalcopyrite occurs both as replacement of pyrite and exsolution in sphalerite. The most significant difference between samples from the East Mine and "B" horizon is the greater abundance of gold in the "B" horizon and its correlation with sphalerite. </p> / Thesis / Bachelor of Science (BSc)
63

Paleobiology and Taphonomy of Exceptionally Preserved Organisms from the Brandon Bridge Formation (Silurian), Wisconsin, USA

Wendruff, Andrew J. 20 December 2016 (has links)
No description available.
64

Strontium and Carbon Isotope Stratigraphy of the Llandovery (Early Silurian): Implications for Tectonics and Weathering

Gouldey, Jeremy C. 29 September 2008 (has links)
No description available.
65

Vulkanismus siluru a devonu pražské pánve / Silurian and Devonian volcanism of the Prague Basin

Tasáryová, Zuzana January 2016 (has links)
The principal goal of the thesis is to constrain nature of magmatic and alteration processes, character of mantle source(s), geotectonic setting and palaeogeographic implications of the Silurian and Devonian volcanism in Prague Basin (Teplá-Barrandian Unit, Bohemian Massif). The thesis is based on extensive geochemical study covering major- and trace-element geochemistry, neodymium isotope geochemistry and mineral chemistry supported by petrographic and field observations. The most important conclusions of the thesis are as follows: 1. The Silurian volcanic rocks of the Prague Basin represent within-plate, transitional alkali to tholeiitic basalts, which erupted in continental rift setting through thick Cadomian crust. The basalts originated by low degrees of partial melting of garnet peridotite mantle source. Older Wenlock basalts are similar to alkaline ocean island basalts (OIB) derived from subcontinental lithospheric mantle (SCLM), enriched most probably by frozen pods of Ordovician magmas. Younger Ludlow basalts resemble tholeiitic enriched mid-oceanic ridge basalts (EMORB) derived from subduction-modified SCLM depleted by Late Cambrian melting. The Wenlock-Ludlow melting is characterized by contemporaneous mixing of melts derived from both enriched and depleted SCLM mantle domains. 2....
66

Enhanced Resolution of the Paleoenvironmental and Diagenetic Features of the Silurian Brassfield Formation

Oakley, Lisa Marie 25 May 2013 (has links)
No description available.
67

Seismic attributes of the Clinton interval reservoir in the Dominion East Ohio Gabor gas storage field near North Canton, Ohio

Haneberg-Diggs, Dominique Miguel January 2014 (has links)
No description available.
68

Petrogenesis of I- and S-type Granites in the Cape River - Lolworth area, northeastern Queensland - Their contribution to an understanding of the Early Palaeozoic Geological History of northeastern Queensland

Hutton, Laurie James January 2004 (has links)
The geological history of the Early Palaeozoic in eastern Australia is not known precisely. The eastern margin of the outcropping Precambrian Craton 'Tasman Line' is poorly understood. The Thomson Orogen, which underlies much of eastern Queensland, lies to the east of the Tasman Line. Basement to the Tasman Orogenic Zone is poorly understood, but knowledge of this basement is critical to our understanding to the processes that formed the eastern margin of the Precambrian craton. The Lolworth-Ravenswood Province lies to the east of the Tasman Line in northeast Queensland. A study of basement terranes in the Lolworth-Ravenswood Province will therefore provide some insights as to the nature of crust beneath this area, and therefore to the basement to the Thomson Orogen. The Fat Hen Creek Complex comprises para-authchthonous bodies of granitoid within middle to upper amphibolite facies metamorphic rocks. Data contained herein demonstrate that the composition and geochemistry of the granitoid are compatible with the generation of the granitoid by partial anatexis of the metamorphic rocks that are part of the Cape River Metamorphics. Temperature and pressure of anatexis is determined to be between 800-850OC and 5-9kb. Under these conditions, experimental data indicate that meta-pelite and meta-greywacke will produce between 5-10% melt coexisting with biotite, cordierite, garnet and plagioclase. The mineralogy of the granitoid bodies in the Fat Hen Creek Complex is consistent with partial anatexis of meta-greywacke at these temperatures and pressures. 5-10% melt is generally insufficient to allow efficient separation of melt and restite. The granitoids of the Fat Hen Creek Complex are interpreted as being a closed system with melt generated during high-grade metamorphism not separating from the residium. U/Pb dating of zircon from the Fat Hen Creek Complex indicate two distinct periods of zircon growth. The older episode occurred during the Late Cambrian to Early Ordovician. A second episode is dated as Middle Ordovician. This younger age coincides with the onset of regional compression, and may be related to exhumation of a mid-crustal layer during thrusting. The Lolworth Batholith is one of three granite batholiths in the Lolworth-Ravenswood Province. It comprises mainly muscovite-biotite granite, with smaller areas of hornblende-biotite granite to granodiorite. Sills and dykes of muscovite and garnet-muscovite leucogranite extensively intrude both of these types. The hornblende-biotite granite to granodiorite is metaluminous, with petrographic and geochemical characteristics similar to the adjacent Ravenswood Batholith. U-Pb SHRIMP ages also overlap with those from the Ravenswood Batholith. ENd(tc) values of ~-3 suggest a significant crustal contribution in the magma. Zircon populations determined using the SHRIMP suggest some inheritance from a Neoproterozoic source. The two-mica granites make up over 80% of the batholith and show little variation throughout. Aluminium Saturation indices range dominantly from 1-1.1, in keeping with the muscovite-bearing nature of the granites. U-Pb ages are significantly younger than the hornblende-biotite granitoids. ENd(tc) is ~-10, suggesting a greater role for crustal material in these granites than in the hornblende-bearing varieties. Previously, these granites were interpreted as S-types, mainly on the basis of the presence of muscovite. Low Na/Ca and Na greater than K are both considered as indicators of source compositions and both are characteristic of a mafic igneous rather than a meta-sedimentary source. Anatexis of mafic igneous rocks at temperatures less than~1000OC are found experimentally to produce peraluminous melts similar to those which produced the two-mica granites. The third major rock-type in the Lolworth Batholith is muscovite leucogranite, which occurs as sills and dykes intruding older granites and basement. The age of the leucogranite was not determined, but it has sharp contacts with the two-mica granite suggesting that the latter had cooled prior to intrusion of the former. The leucogranite is strongly peraluminous and is deemed to have been derived from anatexis of a supra-crustal (meta-sedimentary) source. The batholith is therefore deemed to comprise three different elements. The hornblende-biotite granitoids are the western extension of the adjacent Ravenswood Batholith. The two-mica granite and muscovite leucogranite are derived from different sources, but may be part of the same crustal anatexis event. During the Early Palaeozoic, the Lolworth-Ravenswood Province saw the intrusion of three granite batholiths into a basement of Late Neoproterozoic to Cambrian meta-sedimentary rocks. Also, Late Cambrian to Early Ordovician and Middle Ordovician high-grade metamorphism accompanied by partial anatexis is recorded at several sites across northeast Queensland. Although this metamorphism is restricted to these sites, they are widespread across the area suggestive of a widespread metamorphic event at these times. Similar metamorphism is recorded in the Arunta Inlier in Central Australia increasing the possible extent of this event. The geochemistry, isotopic characteristics and zircon populations of granites in the Lolworth-Ravenswood Province are used to characterise their source rocks; and thus the basement to the Province. Precambrian basement is indicated to underlie the entire province. However, the source rocks for the eastern part of the Province (Ravenswood and into the Lolworth Batholiths) are different to source rocks for the western part of the Province. Georgetown-type crust extends eastwards from the outcropping area, extending under the western Lolworth-Ravenswood Province. Late Mesoproterozoic rocks are recorded from the Cape River area adjacent to the Lolworth Batholith. They are also indicated as source-rocks for granites in the Ravenswood Batholith. Rocks of this age are characteristic of Grenvillian-age mobile belts in the United States. Their presence in north Qeensland has implications for the breakup of Rodinia, the Mesoproterozoic-age super continent that broke up during the Neoproterozoic.

Page generated in 0.0366 seconds