Spelling suggestions: "subject:"simetria escondida"" "subject:"simetria respondidas""
1 |
Hidden symmetries in gauge theories & quasi-integrablility / Simetrias escondidas em teorias de calibre & quasi-integrabilidadeMartins, Gabriel Luchini 25 February 2013 (has links)
This thesis is about some extensions of the ideas and techniques used in integrable field theories to deal with non-integrable theories. It is presented in two parts. The first part deals with gauge theories in 3 and 4 dimensional space-time; we propose what we call the integral formulation of them, which at the end give us a natural way of defining the conserved charges that are gauge invariant and do not depend on the parametrisation of space-time. The definition of gauge invariant conserved charges in non-Abelian gauge theories is an open issue in physics and we think our solution might be a first step into its full understanding. The integral formulation shows a deeper connection between different gauge theories: they share the same basic structure when written in the loop space. Moreover, in our construction the arguments leading to the conservation of the charges are dynamical and independent of the particular solution. In the second part we discuss the recently introduced concept called quasi-integrability: one observes soliton-like configurations evolving through non-integrable equations having properties similar to those expected for integrable theories. We study the case of a model which is a deformation of the non-linear Schr¨odinger equation consisting of a more general potential, connected in a way with the integrable one. The idea is to develop a mathematical approach to treat more realistic theories, which is in particular very important from the point of view of applications; the NLS model appears in many branches of physics, specially in optical fibres and Bose-Einstein condensation. The problem was treated analytically and numerically, and the results are interesting. Indeed, due to the fact that the model is not integrable one does not find an infinite number of conserved charges but, instead, a set of infinitely many charges that are asymptotically conserved, i.e., when two solitons undergo a scattering process the charges they carry before the collision change, but after the collision their values are recovered. / Essa tese discute algumas extensões de ideias e técnicas usadas em teorias de campos integráveis para tratar teorias que não são integráveis. Sua apresentação é feita em duas partes. A primeira tem como tema teorias de calibre em 3 e 4 dimensões; propomos o que chamamos de equação integral para uma tal teoria, o que nos permite de maneira natural a construção de suas cargas invariantes de calibre, e independentes da parametrização do espaço-tempo. A definição de cargas conservadas in variantes de calibre em teorias não-Abelianas ainda é um assunto em aberto e acreditamos que a nossa solução pode ser um primeiro passo em seu entendimento. A formulação integral mostra uma conexão profunda entre diferentes teorias de calibre: elas compartilham da mesma estrutura básica quando formuladas no espaço dos laços. Mais ainda, em nossa construção os argumentos que levam `a conservação das cargas são dinâmicos e independentes de qualquer solução particular. Na segunda parte discutimos o recentemente introduzido conceito de quasi-integrabilidade: em (1 + 1) dimensões existem modelos não integráveis que admitem soluções solitonicas com propriedades similares `aquelas de teorias integráveis. Estudamos o caso de um modelo que consiste de uma deformação (não-integrável) da equação de Schrödinger não-linear (NLS), proveniente de um potencial mais geral, obtido a partir do caso integrável. O que se busca é desenvolver uma abordagem matemática sistemática para tratar teorias mais realistas (e portanto não integráveis), algo bastante relevante do ponto de vista de aplicações; o modelo NLS aparece em diversas áreas da física, especialmente no contexto de fibra ótica e condensação de Bose-Einstein. O problema foi tratado de maneira analítica e numérica, e os resultados se mostram interessantes. De fato, sendo a teoria não integrável não é encontrado um conjunto com infinitas cargas conservadas, mas, pode-se encontrar um conjunto com infinitas cargas assintoticamente conservadas, i.e., quando dois solitons colidem as cargas que eles tinham antes tem os seus valores alterados, mas após a colisão, os valores inicias, de antes do espalhamento, são recobrados.
|
2 |
Hidden symmetries in gauge theories & quasi-integrablility / Simetrias escondidas em teorias de calibre & quasi-integrabilidadeGabriel Luchini Martins 25 February 2013 (has links)
This thesis is about some extensions of the ideas and techniques used in integrable field theories to deal with non-integrable theories. It is presented in two parts. The first part deals with gauge theories in 3 and 4 dimensional space-time; we propose what we call the integral formulation of them, which at the end give us a natural way of defining the conserved charges that are gauge invariant and do not depend on the parametrisation of space-time. The definition of gauge invariant conserved charges in non-Abelian gauge theories is an open issue in physics and we think our solution might be a first step into its full understanding. The integral formulation shows a deeper connection between different gauge theories: they share the same basic structure when written in the loop space. Moreover, in our construction the arguments leading to the conservation of the charges are dynamical and independent of the particular solution. In the second part we discuss the recently introduced concept called quasi-integrability: one observes soliton-like configurations evolving through non-integrable equations having properties similar to those expected for integrable theories. We study the case of a model which is a deformation of the non-linear Schr¨odinger equation consisting of a more general potential, connected in a way with the integrable one. The idea is to develop a mathematical approach to treat more realistic theories, which is in particular very important from the point of view of applications; the NLS model appears in many branches of physics, specially in optical fibres and Bose-Einstein condensation. The problem was treated analytically and numerically, and the results are interesting. Indeed, due to the fact that the model is not integrable one does not find an infinite number of conserved charges but, instead, a set of infinitely many charges that are asymptotically conserved, i.e., when two solitons undergo a scattering process the charges they carry before the collision change, but after the collision their values are recovered. / Essa tese discute algumas extensões de ideias e técnicas usadas em teorias de campos integráveis para tratar teorias que não são integráveis. Sua apresentação é feita em duas partes. A primeira tem como tema teorias de calibre em 3 e 4 dimensões; propomos o que chamamos de equação integral para uma tal teoria, o que nos permite de maneira natural a construção de suas cargas invariantes de calibre, e independentes da parametrização do espaço-tempo. A definição de cargas conservadas in variantes de calibre em teorias não-Abelianas ainda é um assunto em aberto e acreditamos que a nossa solução pode ser um primeiro passo em seu entendimento. A formulação integral mostra uma conexão profunda entre diferentes teorias de calibre: elas compartilham da mesma estrutura básica quando formuladas no espaço dos laços. Mais ainda, em nossa construção os argumentos que levam `a conservação das cargas são dinâmicos e independentes de qualquer solução particular. Na segunda parte discutimos o recentemente introduzido conceito de quasi-integrabilidade: em (1 + 1) dimensões existem modelos não integráveis que admitem soluções solitonicas com propriedades similares `aquelas de teorias integráveis. Estudamos o caso de um modelo que consiste de uma deformação (não-integrável) da equação de Schrödinger não-linear (NLS), proveniente de um potencial mais geral, obtido a partir do caso integrável. O que se busca é desenvolver uma abordagem matemática sistemática para tratar teorias mais realistas (e portanto não integráveis), algo bastante relevante do ponto de vista de aplicações; o modelo NLS aparece em diversas áreas da física, especialmente no contexto de fibra ótica e condensação de Bose-Einstein. O problema foi tratado de maneira analítica e numérica, e os resultados se mostram interessantes. De fato, sendo a teoria não integrável não é encontrado um conjunto com infinitas cargas conservadas, mas, pode-se encontrar um conjunto com infinitas cargas assintoticamente conservadas, i.e., quando dois solitons colidem as cargas que eles tinham antes tem os seus valores alterados, mas após a colisão, os valores inicias, de antes do espalhamento, são recobrados.
|
3 |
Black hole scattering, isomonodromy and hidden symmetriesSANTOS, Fábio Magalhães de Novaes 22 August 2014 (has links)
Submitted by Daniella Sodre (daniella.sodre@ufpe.br) on 2015-04-08T13:01:40Z
No. of bitstreams: 2
TESE Fábio Magalhães Santos.pdf: 3214351 bytes, checksum: 0a87c6aa38227a8b477180479fa9011d (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-04-08T13:01:40Z (GMT). No. of bitstreams: 2
TESE Fábio Magalhães Santos.pdf: 3214351 bytes, checksum: 0a87c6aa38227a8b477180479fa9011d (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2014-08-22 / Espalhamento de campos ao redor de buracos negros é uma importante problema tanto na área
de astrofísica, na detecção de ondas gravitacionais, como em aplicações teóricas, por exemplo,
em AdS/CFT e gravidade quântica. Nesta tese, estudamos aspectos teóricos do espalhamento
de campos em torno de buracos negros Kerr-NUT-(A)dS em 4 dimensões (buraco negro girante,
com carga topológica tipo NUT e imerso em um espaço-tempo de curvatura escalar constante).
Após separação da equação de Klein-Gordon, reduzimos o problema a um espalhamento unidimensional
na variável radial. Em particular, estudamos o espalhamento de um campo escalar
conformemente acoplado ao espaço-tempo (⇠ = 16
), pois nesse caso o número de pontos singulares
reduz de 5 para 4. A equação resultante é Fuchsiana do tipo Heun, equação mais geral do
que a hipergeométrica, com 4 pontos singulares regulares, e suas soluções não existem em termos
de funções elementares. A maior parte dos estudos nessa área de espalhamento são aproximados
ou puramente numéricos. Encontramos, então, uma expressão analítica para os coeficientes
de espalhamento em termos da monodromias das soluções. Estes coeficientes dependem
de traços de monodromias compostas. Usamos a teoria de deformações isomonodrômicas
para encontrar esses coeficientes através das soluções assintóticas da equação de Painlevé VI.
Em particular, estudamos o espalhamento no caso Kerr-dS em detalhe. Além disso, discutimos
certos resultados interessantes no contexto da descrição dual dos estados de um buraco
negro em termos de uma teoria de campos conforme, a chamada dualidade Kerr/CFT. Modos
conformemente acoplados em Kerr-AdS extremal sugerem uma descrição em termos de uma
teoria de campo conforme para a frequência no limite superradiante, além da região próxima
do horizonte.
|
Page generated in 0.117 seconds