• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THE EFFECT OF ALTITUDE EXPOSURE: VIA REBREATHING ON INTERVAL PERFORMANCE

Baldwin, Chris 15 August 2011 (has links)
No description available.
2

Cycling Performance Following Intermittent Hypoxic Training using an Hypoxicator

Bailey, Christopher Mark January 2004 (has links)
Live high - train low altitude camps can enhance endurance power at sea level by 1-2% (Levine & Stray-Gunderson, 1997). More convenient methods to simulate altitude exposure are now available, but their effects on performance are less well characterized. In this study, we investigated intermittent hypoxic training (IHT) using an Hypoxicator, a device that produces oxygen-depleted air that athletes breathe intermittently through masks in a small group at a central venue. Twelve highly-competitive, male cyclists and multi-sport athletes (IHT group) underwent IHT in two, four-week bouts separated by eight weeks. Bout one consisted of 20 one-hour exposures and bout two 18 exposures where normal and low-oxygenated air was breathed in alternating five-minute intervals. The percentage of oxygen inhaled by the subjects was adjusted to produce an oxygen saturation of the blood of 88-92% in the first week of the study, decreasing to 76-80% (equivalent to an altitude of approximately 6000m) in the final week. A control group of 13 similar athletes did not use the Hypoxicator. Performance trials and blood tests were at four-week intervals; there were 3 trials (familiarization and reliability) before use of the Hypoxicator, 3 trials after to determine the effect of simulated altitude, then a second four-week exposure and one more trial. The measures of performance were mean power in a 16-km time trial on a Kingcycle ergometer (IHT group only) and power in a lactate-threshold test at 3 mmol/L above baseline (both groups). The measures from the blood tests were haemoglobin and haematocrit. There was a gradual but erratic improvement in performance in the time trial and lactate threshold tests over the course of the study in both groups, indicating an improvement through training. Relative to the last baseline test (Trial 3), the IHT group showed a 0.6% decrease in mean power over and above the effect of training in the 16-km time trial in Trial 4, nine days after last use of IHT. There was a 0.3% increase in mean power independent of the training effect in Trial 7, after the second round of altitude exposure. Uncertainty in these changes in performance was ±3.5% (95% confidence interval). The changes in lactate threshold in trials 4 and 7 indicate a possible improvement as a result of IHT exposure. Uncertainty in these changes was ±4.0%. There were negligible changes in the haemoglobin and hematocrit of either group at any time. There was small evidence of high responders, who were probably subjects with the DD genotype for the angiotensin converting enzyme gene. The time exposed to IHT had no bearing on performance and there was no evidence "peak" in results at either four or eight weeks after exposure to IHT. In summary, four weeks of IHT exposure probably resulted in a trivial effect on 16-km time-trial performance and the effort-independent measures provided no further clear-cut evidence of a performance improvement.
3

Cycling Performance Following Intermittent Hypoxic Training using an Hypoxicator

Bailey, Christopher Mark January 2004 (has links)
Live high - train low altitude camps can enhance endurance power at sea level by 1-2% (Levine & Stray-Gunderson, 1997). More convenient methods to simulate altitude exposure are now available, but their effects on performance are less well characterized. In this study, we investigated intermittent hypoxic training (IHT) using an Hypoxicator, a device that produces oxygen-depleted air that athletes breathe intermittently through masks in a small group at a central venue. Twelve highly-competitive, male cyclists and multi-sport athletes (IHT group) underwent IHT in two, four-week bouts separated by eight weeks. Bout one consisted of 20 one-hour exposures and bout two 18 exposures where normal and low-oxygenated air was breathed in alternating five-minute intervals. The percentage of oxygen inhaled by the subjects was adjusted to produce an oxygen saturation of the blood of 88-92% in the first week of the study, decreasing to 76-80% (equivalent to an altitude of approximately 6000m) in the final week. A control group of 13 similar athletes did not use the Hypoxicator. Performance trials and blood tests were at four-week intervals; there were 3 trials (familiarization and reliability) before use of the Hypoxicator, 3 trials after to determine the effect of simulated altitude, then a second four-week exposure and one more trial. The measures of performance were mean power in a 16-km time trial on a Kingcycle ergometer (IHT group only) and power in a lactate-threshold test at 3 mmol/L above baseline (both groups). The measures from the blood tests were haemoglobin and haematocrit. There was a gradual but erratic improvement in performance in the time trial and lactate threshold tests over the course of the study in both groups, indicating an improvement through training. Relative to the last baseline test (Trial 3), the IHT group showed a 0.6% decrease in mean power over and above the effect of training in the 16-km time trial in Trial 4, nine days after last use of IHT. There was a 0.3% increase in mean power independent of the training effect in Trial 7, after the second round of altitude exposure. Uncertainty in these changes in performance was ±3.5% (95% confidence interval). The changes in lactate threshold in trials 4 and 7 indicate a possible improvement as a result of IHT exposure. Uncertainty in these changes was ±4.0%. There were negligible changes in the haemoglobin and hematocrit of either group at any time. There was small evidence of high responders, who were probably subjects with the DD genotype for the angiotensin converting enzyme gene. The time exposed to IHT had no bearing on performance and there was no evidence "peak" in results at either four or eight weeks after exposure to IHT. In summary, four weeks of IHT exposure probably resulted in a trivial effect on 16-km time-trial performance and the effort-independent measures provided no further clear-cut evidence of a performance improvement.
4

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF DIFFUSER-EJECTOR SYSTEMS FOR QUALIFICATION OF ROCKET THRUSTERS AT SIMULATED ALTITUDES

Caglar Yilmaz (15346321) 24 April 2023 (has links)
<p>  </p> <p>High altitude test facilities are needed for ground testing of upper stage rocket engines or small satellite thrusters with high expansion ratio nozzles to ensure full-flowing nozzle conditions. Rocket exhaust diffusers and ejector systems are essential components of these facilities and are frequently used to set desired simulated altitude/low pressure conditions and pump out rocket exhaust products. </p> <p>This dissertation combined experimental and numerical efforts on diffuser-ejector systems. The experimental efforts included the development of a Second Throat Exhaust Diffuser (STED) to aid with the qualification of space thrusters in the Purdue Altitude Chamber Facility. While performing these experiments, we characterized the single and two-stage ejector systems operating in conjunction with the diffuser to obtain and maintain specific simulated altitudes. </p> <p>The concurrent numerical effort focused on validating a Computational Fluid Dynamics (CFD) approach based on Reynolds-averaged Navier–Stokes equations flow simulations. After validating the ejector CFD, we used it to derive a corrective coefficient of a lumped parameter ejector model (LPM) developed previously for the ejectors used in the Purdue Altitude Facility. We created variable coefficient maps for the stages of the two-stage ejector system using the same LPM and the test data from one of our experiments. </p> <p>We designed, manufactured, and then validated a STED for altitude testing of a ~50 lbf hypergolic hybrid motor as a part of a NASA JPL project. The designed STED enabled the operation of the hybrid motor for the full duration of the test firing (about 2 seconds) at a simulated altitude of 102,000 feet, slightly above the targeted altitude of 100,000 feet. We also validated our diffuser CFD approach by creating a simulation using the measured diffuser back pressure and the average motor chamber pressure. </p> <p>We then devised an experiment to investigate several diffuser–ejector system configurations using cold gas thrusters with conical and bell nozzles. The main aim of that experiment was to explore the effects of different thruster nozzle geometries, diffuser geometries, and thruster/ejector operational parameters on the performance of a diffuser–ejector system. For all the configurations tested, we reported on the minimum starting and operating pressure ratios and corresponding correction factors on the normal shock method. The large hysteresis regions obtained mostly with bell nozzles having a high initial expansion angle provided an opportunity to economize the facility resources. In some cases which were later found to violate STED second throat contraction limits, we experienced a choking flow at the second throat. Then, we studied the second throat contraction limits in detail using CFD in addition to the experimental data and explored minimum diffuser second throats enabling diffuser starting and improving aerodynamic efficiency. </p> <p>Finally, we machined a larger scale cold gas thruster with different nozzle geometries (having throat diameters in the range of 0.367 – 0.52 inches) from acrylic rods to study possible flow separation and gas condensation events that could occur during tests in the altitude chamber. The main difference here with the previous experiment was that the diffuser (JPL STED) was fixed, and the two-stage ejector system was used to create the necessary back pressure. With the experiments performed at varying axial gaps between the nozzle exit and diffuser inlet, we were able to investigate the effect of that on the diffuser performance. The experimental data collected in this work and the complementary numerical efforts served to generate the operating envelope of the Purdue Altitude Chamber Facility.  </p>
5

The effect of intermittent simulated altitude exposure via re-breathing on cycling performance

Babcock, Carmen J. 06 June 2007 (has links)
No description available.
6

Estudio en poblaciones seleccionadas de la fiabilidad de nuevos protocolos de detección de consumo de hormonas recombinantes (hgH y EPO)

Abellán Sánchez, María Rosario 07 July 2006 (has links)
Las hormonas recombinantes eritropoyetina (EPO) y hormona de crecimiento (GH), prácticamente iguales a las endógenas y de corta vida media en circulación, son de difícil detección directa en el control antidopaje. Se determinaron los valores poblacionales de los biomarcadores indirectos EPO, receptor soluble de la transferrina, insulin-like growth factor-I (IGF-I) y procolágeno tipo III péptido (P-III-P), en poblaciones seleccionadas de deportistas, y el efecto del ejercicio y los distintos tipos de entrenamiento sobre su concentración sérica. La comparación de resultados obtenidos mediante distintos ensayos demostró la necesidad de una validación exhaustiva previa a su utilización. A excepción del P-III-P, los biomarcadores séricos propuestos para la detección de rhEPO y rhGH no se encuentran directamente afectados por el nivel atlético, el ejercicio o la distinta carga de entrenamiento realizada a lo largo de la temporada deportiva. La edad es la principal influencia sobre las concentraciones séricas de IGF-I y P-III-P. / Direct detection of recombinant peptidic hormones erythropoietin (EPO) and growth hormone (GH), very similar to endogen molecules and with a short half life in blood, is difficult in antidoping control. The main objective of this work is to determine indirect biomarkers' values of EPO, soluble transferrin receptor, insulin-like growth factor-I (IGF-I) and procollagen type III peptide (P-III-P), in selected populations of athletes, and the effect of exercise and different types of training on their concentration in serum. The comparison of results obtained by the different assays showed the need of extensive validation of the analytical techniques before their use in the antidoping field. Excepting P-III-P, proposed biomarkers for the detection of rhEPO and rhGH abuse are not directly influenced by the athletic level, exercise or different training workload along the sport season. Age is the main factor affecting IGF-I and P-III-P concentrations in serum.

Page generated in 0.0857 seconds