• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 8
  • 7
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 9
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Statistical Models and Methods for Rivers in the Southwest

Hagan, Robert M. 16 April 1977 (has links)
From the Proceedings of the 1977 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 15-16, 1977, Las Vegas, Nevada / Riverflow modeling is believed useful for purposes of decision making with respect to reservoir control, irrigation planning, and flood forecasting and design of structures to contain floods. This author holds the view that present riverflow models in vogue are unsatisfactory because, for one thing, sample simulations according to these models do not resemble observed southwestern river records. The purpose of this paper is to outline a general Markov model which assumes only that rivers have a finite memory. We show how to calibrate the model from river records and then present evidence to support our contention that some success has been realized in mimicking typical flows by our simulation procedure.
32

MODELING AND SIMULATION OF CUTTING MECHANICS IN CFRP MACHINING AND ITS MACHINING SOUND ANALYSIS

Kyeongeun Song (13169763) 28 July 2022 (has links)
<p>Carbon fiber bending during Carbon Fiber Reinforced Plastic (CFRP) milling is an important factor on the quality of the machined surface. When the milling tool rotates, the fiber first contacts the rake face instead of the tool edge at a certain cutting angle, then the fiber is bent instead of being cut by the tool. It causes the matrix and the fiber to fall out, and the fiber is broken from deep inside the machined surface. The broken fibers are pulled out as the tool rotates, which is known as pull-out fibers. The machining defect is the main cause of deteriorating the quality of the machined surface. To reduce such machining defects, it is important to predict the carbon fiber bending during CFRP milling. However, it is difficult to determine a point where fiber bending occurs because the fiber cutting angle changes every moment as the tool rotates. Therefore, in this study, CFRP milling simulation was performed to numerically analyze the machining parameters such as fiber cutting angle, fiber length, and the magnitude of fiber bending according to the different milling conditions. In addition, the deformation of the matrix existing between carbon fibers is predicted based on the fiber bending information obtained through simulation, and matrix shear strain energy model is developed. Also, the relationship between the matrix shear strain energy and machining quality is analyzed. Through verification experiments under various machining conditions, it is confirmed that the quality of the machined surface deteriorated as the matrix shear strain energy increased. Moreover, this study analyzed the fiber cutting mechanism considering bent fibers during CFRP milling and proposed a method to identify the type of machining mechanism through machining sound analysis. Through experiments, it was verified that fiber bending or defects can be identified through machining sound analysis in the high-frequency range between 7,500 Hz and 14,800 Hz. From the analysis, the effect of different chip thickness in up-milling and down-milling on fiber bending was investigated by analyzing simulation and sound signal. From machining experiments, the effect of this difference on cutting force and machining quality was verified. Lastly, we developed a minimum chip thickness and fiber fracture model in CFRP milling and analyzed the effect of fractured fibers on the machining sound. Carbon fibers located below the minimum chip thickness do not contact the tool edge and are compressed by the bottom face of the tool, and these fibers are excessively bent and broken. As these broken fibers are discharged while scratching the flank face of the tool, a loud machining sound is generated. Moreover, through the verification experiment, it was confirmed that the number of broken fibers is proportional to the loudness of the sound, and calculated number of broken fibers for one second using the fiber fracture model coincides with the high-frequency machining sound range of 7,500 Hz to 14,800 Hz.</p>
33

A Stochastic Analysis of Flows on Rillitto Creek

Baran, N. E., Kisiel, C. C., Duckstein, L. 23 April 1971 (has links)
From the Proceedings of the 1971 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 22-23, 1971, Tempe, Arizona / In order to construct a simulation model for ephemeral streamflow and to examine in depth the problem of the worth of data for that model, measurements of the ephemeral streamflow of Rillitto creek, Tucson, were analyzed for the period 1933-1965. The simulation model was based on several hypotheses: (1) flow durations and their succeeding dry periods (time when no flow is present) are independent; (2) the distribution of the lengths of the dry periods and flows is stationary over a certain period of the year (summer); (3) stationary probability distributions for flow durations and for dry period lengths can be derived. A related problem was how to derive a simulation model for the total amount of flow (in acre-ft) within 1 flow period. Three variables were considered: flow duration (minutes), peak intensity of flow (cu ft/sec) and antecedent dry period-minutes (ADP). Because the assumption of variance constancy does not hold, a multiplicative regression model was used. Using an analysis of variance, which is described in detail, the worth of the 3 kinds of data were examined in relation to total flow. It was concluded that there are at least 5 times during the year when the flow intervals differ significantly, and the ADP is not important in determining flow volume because of the poison flow arrival rate in summer. Events occur at random and are not clustered as in summer, indicating that channel moisture does not differ much between flow events.
34

Input Specifications to a Stochastic Decision Model

Clainos, D. M., Duckstein, L., Roefs, T. G. 06 May 1972 (has links)
From the Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 5-6, 1972, Prescott, Arizona / The use of discrete conditional dependency matrices as input to stochastic decision models is examined. Some of the problems and initial assumptions involved with the construction of the above mentioned matrices are discussed. Covered in considerable detail is the transform used to relate the gamma space with the normal space. A new transform is introduced that should produce reasonable results when the record of streamflow (data) has a highly skewed distribution. Finally, the possibility of using the matrices to provide realistic inputs to a stochastic dynamic program is discussed.
35

Water Disposition in Ephemeral Stream Channels

Sammis, T. W. 06 May 1972 (has links)
From the Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 5-6, 1972, Prescott, Arizona / The contribution of flows from small watersheds to groundwater recharge is of interest. Water disposition depends on infiltration and evaporation characteristics. This study had the objective of developing an infiltration equation for estimating transmission losses during a flow event in an ephemeral stream near Tucson, Arizona, in the rocky mountain forest and range experiment station. Palo Verde, desert hackberry, cholla, marmontea and mesquite are the major bank species of the sandy channels. A climatic section consisting of a hydrothermograph recording rain gage and class a evaporation pan was installed. A water balance method was used to estimate evapotranspiration. A specially designed infiltrometer was used to simulate flow events. The data allowed the following conclusions: Philip's infiltration equation is an excellent mathematical model, initial moisture affects initial infiltration rate, the Philip coefficients are determinable by the infiltrometer constructed, soil moisture affects infiltration rates, and transpiration rates diminish linearly proportional to the ratio of available water to field capacity.
36

Competitive Groundwater Usage from the Navajo Sandstone

Doye, F. H., Roefs, T. G. 05 May 1973 (has links)
From the Proceedings of the 1973 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 4-5, 1973, Tucson, Arizona / Groundwater modeling is used to theoretically relate mining pumpage of the Navajo Sandstone to declines in the potentiometric surface at Navajo and Hopi Indian community, domestic, and stock usage locations. The shallow wells on top of Black Mesa are shown to be part of a perched water table condition which is dependent upon the hydraulic conductivity of an aquatard known as the Mancos Shale. The isolation of the aquatard allows the shallow wells to be treated as a problem separate from that of the artesian and recharge areas. Computer modeling of the groundwater system is concerned only with those Indian wells which directly tap the Navajo Sandstone in either artesian or free water table areas. The computer simulation developed is a modified version of the basic artesian aquifer routine used by the Illinois State Water Survey. Computer results correspond with the low percentage of storage withdrawal calculated for the artesian area under Black Mesa.
37

Uncertainty in Sediment Yield from a Semi-Arid Watershed

Smith, J. M., Fogel, M., Duckstein, L. 20 April 1974 (has links)
From the Proceedings of the 1974 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 19-20, 1974, Flagstaff, Arizona / The paper presents a stochastic model for the prediction of sediment yield in a semi -arid watershed based on rainfall data and watershed characteristics. Uncertainty stems from each of the random variables used in the model, namely, rainfall amount, storm duration, runoff, and peak flow. Soil Conservation Service formulas are used to compute the runoff and peak flow components of the Universal Soil Loss Equation. A transformation of random variables is used to obtain the distribution function of sediment yield from the joint distribution of rainfall amount and storm duration. The model has applications in the planning of reservoirs and dams where the effective lifetime of the facility may be evaluated in terms of storage capacity as well as the effects of land management on the watershed. Experimental data from the Atterbury watershed is used to calibrate the model and to evaluate uncertainties associated with our uncertain knowledge of the parameters of the joint distribution of rainfall and storm duration.
38

A Sediment Yield Equation from an Erosion Simulation Model

Shirley, E. D., Lane, L. J. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / Sediment is widely recognized as a significant pollutant affecting water quality. To assess the impact of land use and management practices upon sediment yield from upland areas, it is necessary to predict erosion and sediment yield as functions of runoff, soil characteristics such as erodibility, and watershed characteristics. The combined runoff-erosion process on upland areas was modeled as overland flow on a plane, with rill and interrill erosion. Solutions to the model were previously obtained for sediment concentration in overland flow, and the combined runoff-erosion model was tested using observed runoff and sediment data. In this paper, the equations are integrated to produce a relationship between volume of runoff and total sediment yield for a given storm. The sediment yield equation is linear in runoff volume, but nonlinear in distance and, thus, watershed area. Parameters of the sediment yield equation include the hydraulic resistance parameter, rill and interrill erodibility terms, and flow depth-detachment coefficient and exponent.
39

SEDCON: A Model of Nutrient and Heavy Metal Losses in Suspended Sediment

Gabbert, William A., Ffolliott, Peter F., Rasmussen, William O. 24 April 1982 (has links)
From the Proceedings of the 1982 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona - Nevada Academy of Science - April 24,1982, Tempe, Arizona / A prototypical computer simulation model has been developed to aid watershed managers in estimating impacts of alternative land management practices on nutrient and heavy metal losses due to transported sediment on forested watersheds of the southwestern United States. The model, called SEDCON, allows users at remote locations with modest computer terminal equipment and commonly available data to obtain reliable estimates of nutrient and heavy metal concentrations in suspended sediment originating on uniformly-stocked, forested watersheds in the Southwest. SEDCON has been structured in an interactive mode to facilitate its use by persons not familiar with computer operations. Written in FORTRAN IV computer language, the model requires approximately 5000 words of core. SEDCON is operative on a DEC-10 computer at the University of Arizona.

Page generated in 0.13 seconds