• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 50
  • 50
  • 26
  • 11
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Sustainable Process Design to Meet Ecological and Social Goals Through Novel Simulation Tools and Optimization

Aleissa, Yazeed M. January 2022 (has links)
No description available.
32

A Simulation and Optimization Study of Spherical Perfectly Matched Layers

Bao, Wentao 18 October 2017 (has links)
No description available.
33

OPERATIONAL DECISION MAKING IN COMPOUND ENERGY SYSTEMS USING MULTI-LEVEL MULTI PARADIGM SIMULATION BASED OPTIMIZATION

Mazhari, Esfandyar M. January 2011 (has links)
A two level hierarchical simulation and decision modeling framework is proposed for electric power networks involving PV based solar generators, various storage, and grid connection. The high level model, from a utility company perspective, concerns operational decision making and defining regulations for customers for a reduced cost and enhanced reliability. The lower level model concerns changes in power quality and changes in demand behavior caused by customers' response to operational decisions and regulations made by the utility company at the high level. The higher level simulation is based on system dynamics and agent-based modeling while the lower level simulation is based on agent-based modeling and circuit-level continuous time modeling. The proposed two level model incorporates a simulation based optimization engine that is a combination of three meta-heuristics including Scatter Search, Tabu Search, and Neural Networks for finding optimum operational decision making. In addition, a reinforcement learning algorithm that uses Markov decision process tools is also used to generate decision policies. An integration and coordination framework is developed, which details the sequence, frequency, and types of interactions between two models. The proposed framework is demonstrated with several case studies with real-time or historical for solar insolation, storage units, demand profiles, and price of electricity of grid (i.e., avoided cost). Challenges that are addressed in case studies and applications include 1) finding a best policy, optimum price and regulation for a utility company while keeping the customers electricity quality within the accepted range, 2) capacity planning of electricity systems with PV generators, storage systems, and grid, and 3) finding the optimum threshold price that is used to decide how much energy should be bought from sold to grid to minimize the cost. Mathematical formulations, and simulation and decision modeling methodologies are presented. A grid-storage analysis is performed for arbitrage, to explore if in future it is going to be beneficial to use storage systems along with grid, with future technological improvement in storage and increasing cost of electrical energy. An information model is discussed that facilitates interoperability of different applications in the proposed hierarchical simulation and decision environment for energy systems.
34

Simulation-Optimization of the Management of Sensor-Based Deficit Irrigation Systems

Kloß, Sebastian 11 January 2016 (has links) (PDF)
Current research concentrates on ways to investigate and improve water productivity (WP), as agriculture is today’s predominant freshwater consumer, averaging at 70% and reaching up to 93% in some regions. A growing world population will require more food and thus more water for cultivation. Regions that are already affected by physical water scarcity and which depend on irrigation for growing crops will face even greater challenges regarding their water supply. Other problems in such regions are a variable water supply, inefficient irrigation practices, and over-pumping of available groundwater resources with other adverse effects on the ecosystem. To face those challenges, strategies are needed that use the available water resources more efficiently and allow farming in a more sustainable way. This work focused on the management of sensor-based deficit irrigation (DI) systems and improvements of WP through a combined approach of simulation-optimization and irrigation experiments. In order to improve irrigation control, a new sensor called pF-meter was employed, which extended the measurement range of the commonly used tensiometers from pF 2.9 to pF 7. The following research questions were raised: (i) Is this approach a suitable strategy to improve WP; (ii) Is the sensor for irrigation control suitable; (iii) Which crop growth models are suitable to be part of that approach; and (iv) Can the combined application with experiments prove an increase of WP? The stochastic simulation-optimization approach allowed deriving parameter values for an optimal irrigation control for sensor-based full and deficit irrigation strategies. Objective was to achieve high WP with high reliability. Parameters for irrigation control included irrigation thresholds of soil-water potentials because of the working principle behind plant transpiration where pressure gradients are transmitted from the air through the plant and into the root zone. Optimal parameter values for full and deficit irrigation strategies were tested in irrigation experiments in containers in a vegetation hall with drip irrigated maize and compared to schedule-based irrigation strategies with regard to WP and water consumption. Observation data from one of the treatments was used afterwards in a simulation study to systematically investigate the parameters for implementing effective setups of DI systems. The combination of simulation-optimization and irrigation experiments proved to be a suitable approach for investigating and improving WP, as well as for deriving optimal parameter values of different irrigation strategies. This was verified in the irrigation experiment and shown through overall high WP, equally high WP between deficit and full irrigation strategies, and achieved water savings. Irrigation thresholds beyond the measurement range of tensiometers are feasible and applicable. The pF-meter performed satisfactorily and is a promising candidate for irrigation control. Suitable crop models for being part of this approach were found and their properties formulated. Factors that define the behavior of DI systems regarding WP and water consumption were investigated and assessed. This research allowed for drawing the first conclusions about the potential range of operations of sensor-based DI systems for achieving high WP with high reliability through its systematical investigation of such systems. However, this study needs validation and is therefore limited with regard to exact values of derived thresholds.
35

A Simulation-based Optimization Approach for Automated Vehicle Scheduling at Production Lines

Altrabulsy, Osama January 2019 (has links)
The world becomes more integrated and sophisticated, especially in the birth of advanced technologies, which have influenced all life aspects. Automated systems could be considered an example of those aspects, which have been affected by recent changes in today’s life. The competition in the market is putting increasing pressure on different manufacturing organizations to find the best methods that enable them to stay up to date with the latest technologies in the industrial field. One of the most famous dilemmas that exist in this field is designing an efficient and flexible material handling system. This issue draws the attention of both decision-makers in different companies and software developers who put considerable effort into making that desired system real. Inclusive research needs to be performed to obtain such a system, and the most significant part of the research that requires special attention is the applied methodology.The approach to be adapted determines the degree of stability of a particular material handling system to function effectively in the case studied. Several methods are available and could be implemented to design that effective system such as meta-heuristic algorithms, and approaches that depend on simulation software tools. The latter approach, which is the simulation approach, seems to get increasing attention from developers of the industrial system since it plays a vital role in reducing the cost and preserving available resources. Besides, it helps predict future changes and scenarios of the system to be analyzed.In this project, a discrete-event simulation model was built for the proposed layout of the main shop floor owned by a Swedish manufacturing company. The corporation located in the south of Sweden, and it produces a vast range of manufacture of goods. The chosen methodology is a combination of lean, simulation, and optimization approaches. It has been implemented on the proposed layout in which material is handled into production lines by using automated guided vehicles (AGVs) as a means of transportation. The analysis of results shows potential benefits, where the production process became more efficient and organized since the operational cost has been reduced by decreasing the number of required vehicles. Moreover, the simulation approach facilitated testing new ideas and designing improved scenarios without the necessity to change the current state of the factory layout or disturbing the regular activities.
36

Evaluation of Efficiency-Enhancing Measures Using Optimization Algorithms for Fuel Cell Vehicles

Uhrig, Florian, Säger, Peter, Kurzweil, Peter, von Unwerth, Thomas 25 November 2019 (has links)
Efficiency-enhancing measures are evaluated for a serial hybrid fuel cell vehicle over a drive cycle. The regarded powertrain consists of fuel cell system, battery, DC-DC converter, inverter and electrical machine. Within the fuel cell system, the air supply is the largest parasitic load. For the lowest dissipation, different air compression architectures are optimized by a scaling algorithm and compared. Phase switching reduces DC-DC losses. Additionally, a variable DC-link voltage increases efficiency of electrical machine and inverter. Dynamic Programming (DP) is used to evaluate these measures. The DP was extended by start-up and shutdown energy of the fuel cell system to model realistic cycle consumptions. Finally, all these efficiency enhancing measures lead to a reduction of energy consumption by 6.4 % for the serial hybrid fuel cell vehicle over a drive cycle.
37

Simulation-Optimization of the Management of Sensor-Based Deficit Irrigation Systems

Kloß, Sebastian 11 January 2016 (has links)
Current research concentrates on ways to investigate and improve water productivity (WP), as agriculture is today’s predominant freshwater consumer, averaging at 70% and reaching up to 93% in some regions. A growing world population will require more food and thus more water for cultivation. Regions that are already affected by physical water scarcity and which depend on irrigation for growing crops will face even greater challenges regarding their water supply. Other problems in such regions are a variable water supply, inefficient irrigation practices, and over-pumping of available groundwater resources with other adverse effects on the ecosystem. To face those challenges, strategies are needed that use the available water resources more efficiently and allow farming in a more sustainable way. This work focused on the management of sensor-based deficit irrigation (DI) systems and improvements of WP through a combined approach of simulation-optimization and irrigation experiments. In order to improve irrigation control, a new sensor called pF-meter was employed, which extended the measurement range of the commonly used tensiometers from pF 2.9 to pF 7. The following research questions were raised: (i) Is this approach a suitable strategy to improve WP; (ii) Is the sensor for irrigation control suitable; (iii) Which crop growth models are suitable to be part of that approach; and (iv) Can the combined application with experiments prove an increase of WP? The stochastic simulation-optimization approach allowed deriving parameter values for an optimal irrigation control for sensor-based full and deficit irrigation strategies. Objective was to achieve high WP with high reliability. Parameters for irrigation control included irrigation thresholds of soil-water potentials because of the working principle behind plant transpiration where pressure gradients are transmitted from the air through the plant and into the root zone. Optimal parameter values for full and deficit irrigation strategies were tested in irrigation experiments in containers in a vegetation hall with drip irrigated maize and compared to schedule-based irrigation strategies with regard to WP and water consumption. Observation data from one of the treatments was used afterwards in a simulation study to systematically investigate the parameters for implementing effective setups of DI systems. The combination of simulation-optimization and irrigation experiments proved to be a suitable approach for investigating and improving WP, as well as for deriving optimal parameter values of different irrigation strategies. This was verified in the irrigation experiment and shown through overall high WP, equally high WP between deficit and full irrigation strategies, and achieved water savings. Irrigation thresholds beyond the measurement range of tensiometers are feasible and applicable. The pF-meter performed satisfactorily and is a promising candidate for irrigation control. Suitable crop models for being part of this approach were found and their properties formulated. Factors that define the behavior of DI systems regarding WP and water consumption were investigated and assessed. This research allowed for drawing the first conclusions about the potential range of operations of sensor-based DI systems for achieving high WP with high reliability through its systematical investigation of such systems. However, this study needs validation and is therefore limited with regard to exact values of derived thresholds.
38

CREO SIMULATE : ROADMAP

Coronado, Jose 06 June 2017 (has links)
This presentation is intended to inform about the enhancements of Creo Simulate and the Roadmap for the future.
39

Noise and Hotel Revenue Management in Simulation-based Optimization

Dalcastagnè, Manuel 14 October 2021 (has links)
Several exact and approximate dynamic programming formulations have already been proposed to solve hotel revenue management (RM) problems. To obtain tractable solutions, these methods are often bound by simplifying assumptions which prevent their application on large and dynamic complex systems. This dissertation introduces HotelSimu, a flexible simulation-based optimization approach for hotel RM, and investigates possible approaches to increase the efficiency of black-box optimization methods in the presence of noise. In fact, HotelSimu employs black-box optimization and stochastic simulation to find the dynamic pricing policy which is expected to maximize the revenue of a given hotel in a certain period of time. However, the simulation output is noisy and different solutions should be compared in a statistically significant manner. Various black-box heuristics based on variations of random local search are investigated and integrated with statistical analysis techniques in order to manage efficiently the optimization budget.
40

THREE ESSAYS ON PRODUCTION AND INVENTORY MANAGEMENT

FENG, KELI 29 September 2005 (has links)
No description available.

Page generated in 0.1404 seconds