1 |
Optimisation des convertisseurs d'électronique de puissance selon des critères thermiques et CEM. Application aux dispositifs dédiés à l'aéronautiqueMandray, Sylvain 26 June 2009 (has links) (PDF)
Le développement des convertisseurs d'électronique de puissance pour les applications aéronautiques nécessite de travailler sur les modules de puissance. Le but est d'obtenir des systèmes fiables et compacts, points qui sont critiques dans les applications embarquées. Le dimensionnement reste un point délicat à cause de la multitude des composants présents et des physiques mises en jeu. L'étude s'intéresse à la modélisation des phénomènes liés aux aspects thermiques et à la compatibilité électromagnétique. Son originalité porte sur l'optimisation des solutions réalisées qui réduit simultanément, dès la phase de conception, les disparités thermiques et les courants perturbateurs. Ce travail s'inscrit parfaitement dans le cadre du prototypage virtuel des convertisseurs. Dans un second temps, deux solutions ont été proposées pour réduire encore plus l'émission des courants perturbateurs. Ce travail constitue une avancée importante dans la conception des convertisseurs.
|
2 |
Contribution à l'intégration de la modélisation et la simulation multi-physique pour conception des systèmes mécatroniques,Hammadi, Moncef 12 January 2012 (has links) (PDF)
Le verrou de l'intégration de la simulation multi-physique dans la conception des systèmes mécatroniques est lié, entre autres, aux problèmes d'interopérabilité entre les outils de simulation. Ces problèmes engendrent des difficultés pour assurer des optimisations multidisciplinaires. Dans cette thèse, nous avons développé une approche de conception intégrée permettant de franchir cet obstacle. Cette approche s'appuie sur l'utilisation d'une plateforme d'intégration permettant de coupler divers outils de modélisation et de simulation. La modélisation du comportement multi-physique des composants au niveau détaillé est assurée par les méta-modèles, également utilisés pour l'optimisation multidisciplinaire des composants du système mécatronique. Ces méta-modèles permettent aussi d'intégrer le comportement multi-physique des composants et des modules mécatroniques pour la simulation au niveau système. Cette approche a été validée avec une modélisation d'un véhicule électrique. Ainsi, le niveau conceptuel de modélisation a été effectué avec le langage de modélisation des systèmes SysML et la véri_cation d'un test de performance d'accélération a été réalisée avec le langage de modélisation Modelica. Le module de conversion de puissance électrique du véhicule avec les fils de bonding a été modélisé avec la CAO 3D et son comportement multi-physique a été vérifié avec la méthode des éléments finis. Des méta-modèles sont ainsi élaborés en utilisant les techniques de surfaces de réponse et les réseaux de neurones de fonctions à base radiale. Ces méta-modèles ont permis ensuite d'effectuer des optimisations géométriques bi-niveaux du convertisseur de puissance et des fils de bonding. Le comportement électro-thermique du convertisseur de puissance et celui thermo-mécanique des fils de bonding ont été alors intégrés au niveau système à travers les méta-modèles. Les résultats montrent la flexibilité de l'approche du point de vue échange des méta-modèles et optimisation multidisciplinaire. Cette approche permet ainsi un gain très important du temps de conception, tout en respectant la précision souhaitée.
|
3 |
Contribution à l'intégration de la modélisation et la simulation multi-physique pour conception des systèmes mécatroniques, / Contribution to the integration of multiphysics modelling and simulation for the design of mechatronic systemsHammadi, Moncef 12 January 2012 (has links)
Le verrou de l'intégration de la simulation multi-physique dans la conception des systèmes mécatroniques est lié, entre autres, aux problèmes d'interopérabilité entre les outils de simulation. Ces problèmes engendrent des difficultés pour assurer des optimisations multidisciplinaires. Dans cette thèse, nous avons développé une approche de conception intégrée permettant de franchir cet obstacle. Cette approche s'appuie sur l'utilisation d'une plateforme d'intégration permettant de coupler divers outils de modélisation et de simulation. La modélisation du comportement multi-physique des composants au niveau détaillé est assurée par les méta-modèles, également utilisés pour l'optimisation multidisciplinaire des composants du système mécatronique. Ces méta-modèles permettent aussi d'intégrer le comportement multi-physique des composants et des modules mécatroniques pour la simulation au niveau système. Cette approche a été validée avec une modélisation d'un véhicule électrique. Ainsi, le niveau conceptuel de modélisation a été effectué avec le langage de modélisation des systèmes SysML et la véri_cation d'un test de performance d'accélération a été réalisée avec le langage de modélisation Modelica. Le module de conversion de puissance électrique du véhicule avec les fils de bonding a été modélisé avec la CAO 3D et son comportement multi-physique a été vérifié avec la méthode des éléments finis. Des méta-modèles sont ainsi élaborés en utilisant les techniques de surfaces de réponse et les réseaux de neurones de fonctions à base radiale. Ces méta-modèles ont permis ensuite d'effectuer des optimisations géométriques bi-niveaux du convertisseur de puissance et des fils de bonding. Le comportement électro-thermique du convertisseur de puissance et celui thermo-mécanique des fils de bonding ont été alors intégrés au niveau système à travers les méta-modèles. Les résultats montrent la flexibilité de l'approche du point de vue échange des méta-modèles et optimisation multidisciplinaire. Cette approche permet ainsi un gain très important du temps de conception, tout en respectant la précision souhaitée. / Difficulty of integrating multi-physics simulation in mechatronic system design is related, among others, to issues of interoperability between design tools, which lead to difficulties to ensure multidisciplinary optimizations. In this thesis, we have developed an integrated design approach to overcome this obstacle. This approach relies on the use of integrating platforms for coupling various design tools. Capture of multi-physics behaviour of components at detailed level is provided by meta-models which are also used for multidisciplinary optimization. These meta-models are therefore used to integrate multi-physics behaviour of mechatronic components and modules in system-level simulations. This approach has been validated with a design case of an electric vehicle. Conceptual design level has been performed with the Systems Modeling Language SysML and a verification of an acceleration performance test has been achieved with modeling language Modelica. Electric power converter with wire bondings has been modeled using 3D CAD and the multi-physics behaviour has been verified with finite elements method. Meta-models have then been developed for the power converter and wire bondings using techniques of response surfaces and neuronal networks of radial basis functions. These meta-models have been used to perform geometric bi-level optimizations of the components. Electro-thermal behavior of the power converter and thermo-mechanical behavior of the wire bondings have been integrated at system level through meta-models. Results show flexibility of the approach used in terms of exchange of meta-models and multidisciplinary optimization. Thus, this approach allows an important gain of design time while maintaining the desired accuracy.
|
4 |
Contribution à la simulation électro-thermomécanique numérique 3d : appliquée à l'étude de la fiabilité des interrupteurs à semiconducteurs packages, utilisés en traction ferroviaire / Contribution to electro-thermomechanical 3D numerical studies, applied to power semiconductors used in railway devicesMedjahed, Hassen 11 May 2012 (has links)
La tendance actuelle dans le domaine du transport ferroviaire est d'intégrer des modules de puissance de plus en plus puissants dans des volumes de plus en plus réduits. Cela pose des problèmes, notamment en termes de fiabilité, car lors de leurs cycles de fonctionnement, les interrupteurs à semi-conducteurs et leur environnement immédiat sont soumis à des contraintes électro-thermo-mécaniques plus sévères. Cela peut entraine leur destruction et donc la défaillance de la fonction de conversion d'énergie. L'objectif principal de cette thèse est de décrire des modèles et des outils de simulation multi-physiques afin de caractériser ces contraintes. Nous avons choisi comme cas d'étude les fils de connexion dits «wire bonding». Ces fils sont, en effet, considérés comme l'un des points faibles en ce qui concerne la durée de vie des modules de puissance, utilisés dans les systèmes embarqués notamment dans le ferroviaire. Dans ce contexte multi-physique, nous avons développé des modèles, numériques, éléments finis, analytiques, 3D ou 1D, afin de déterminer les contraintes thermomécaniques lors du passage du courant dans ces fils. A travers les modèles décrits et les résultats de simulation présentés, nous caractérisons le comportement des fils d'un point de vue électrique, thermique, magnétique ou mécanique. Plus précisément les interactions électromagnétiques, électrothermiques, électromécaniques ou thermomécaniques entre modèles et entre outils de simulation sont discutées. Les résultats sont confrontés aux mesures thermiques et de déplacement. Ces dernières sont réalisées par le biais de prototypes expérimentaux. Le mode de sollicitation utilisé est dit actif. Un régime de courant, continu ou alternatif, est appliqué au système. La réponse thermique et mécanique du système est alors obtenue. Les conclusions de cette étude permettent d'une part de mieux caractériser le comportement électro thermomécanique des fils de bonding et de mieux comprendre l'origine des modes de défaillance de cette technologie d'interconnexion. D'autre part, une démarche d'utilisation des modèles et outils logiciels multi physiques pour une simulation électro thermomécanique est présentée / The trend in the field of railway transport is to integrate increasingly powerful power modules in smaller volumes. This is problematic, especially in terms of reliability: during their cycles of operation, the semiconductor switches and their immediate environment are subject to tougher electro-thermo-mechanical stresses. This can lead to their destruction and then, to the failure of the energy conversion function. The main goal of this work is to describe the models and multi-physics simulation tools to characterize these stresses. We chose as a case study the connection wire called “wire bonding”. These wires are, indeed, considered one of the weaknesses of the life time of the power module used in embedded systems, particularly in railway applications. In this multi-physics context, we have developed numerical, finite elements, analytical, 3D or 1D models to determine the thermo-mechanical stresses during the current flow through the wires. Thanks to the models described and the simulation results presented, we characterize the behavior of the wire for an electrical, thermal, magnetic or mechanical point of view. More precisely, the electro-magnetic, electro-thermal, electro-mechanical or thermo-mechanical interactions between models and between simulation tools are discussed. The results are compared to thermal and displacement measurements. They are realized thanks to experimental prototypes. The type of solicitation is called active. A system of direct or alternating current is applied to the system. The thermal and mechanical response of the system is obtained. The conclusions of this study allow, on the one hand, characterizing the electro thermo-mechanical behavior of wires bonding and understanding the origin of the failure modes of this technology. On the other hand, a way of using models and multi-physics software tools for an electro thermo-mechanical simulation is presented
|
5 |
Matrice de nanofils piézoélectriques interconnectés pour des applications capteur haute résolution : défis et solutions technologiques / Interconnected piezoelectric nanowire matrix for high resolution sensor applications : technological challenges and solutionsLeon Perez, Edgar 04 March 2016 (has links)
Ce projet de thèse aborde la question de l’intégration hétérogène de nanofils interconnectés sur des puces microélectroniques à destination de dispositifs de type MEMS et NEMS. Ces dispositifs visent à adresser la problématique globale qu’est le « More than Moore », c’est-à-dire la transformation des filières CMOS classiques pour permettre le développement de nouveaux micro et nano-composants intégrés.En particulier, ces dernières années, une variété de dispositifs à base de nanomatériaux ont vu le jour, conférant à des dispositifs de type micro-actionneurs et micro-capteurs de nouvelles fonctionnalités et/ou des performances accrues, e.g. en termes de résolution, sensibilité, sélectivité. Nous nous intéresserons ici à un certain type de nanostructures, les nanofils d’oxyde de zinc (ZnO), qui ont surtout été utilisés pour concevoir des dispositifs dont le principe de fonctionnement exploite l’effet piézoélectrique, souvent astucieusement combiné avec leurs propriétés semiconductrices. En effet, sous l’effet d’une contrainte mécanique ou d’un déplacement, les nanofils piézoélectriques génèrent un potentiel électrique (piézopotentiel). Si, en outre, les nanofils sont semiconducteurs, le piézopotentiel peut être utilisé pour contrôler un courant externe en fonction de la contrainte mécanique imposée au nanofil (effet piézotronique). L’avantage d’utiliser des nanostructures unidimensionnelles réside dans la modularité de leurs propriétés mécaniques et piézoélectriques en comparaison avec le matériau massif. Par ailleurs, leur intégration est aujourd’hui possible par des voies de croissance compatibles avec les procédés microélectroniques (CMOS/MEMS). Toutes ces considérations rendent possibles la conception de dispositifs très haute performance combinant la faible dimension des éléments fonctionnels (et donc une forte densité d’intégration synonyme de haute résolution spatiale) et leur sensibilité à des phénomènes d’échelle nanoscopique.Dans ce projet de thèse, on adoptera une vision très technologique de la conception de capteurs matriciels à base de nanofils piézoélectriques verticaux en ZnO. S’appuyant sur la prédiction des performances théoriques et la levée des verrous technologiques associés à la conception et la fabrication du capteur, cette étude s’attache à fournir des prototypes faisant la preuve de concept de ces dispositifs haute performance. Dans un premier temps, la réflexion s’articule autour de modèles multi-physiques par éléments finis (FEM) de la réponse piézoélectrique d’un seul nanofil en flexion, modèle que nous avons fait évoluer vers des pixels complets représentatifs d’un nanofil interconnecté dans une matrice. Sur la base de ces considérations, nous avons imaginé des moyens de caractérisation de la réponse piézoélectrique d’un fil, puis d’un pixel. Le banc de caractérisation mis en place a mis en évidence la complexité d’une mesure piézoélectrique systématique, calibrée et décorrélée des éléments environnants du pixel. Des solutions technologiques adéquates ont pu être imaginées et mises en œuvre à travers la réalisation de pixels élémentaires caractérisables et dont la réponse piézoélectrique peut être prédite théoriquement.Cette réalisation a fait appel à un développement en plusieurs étapes, incluant la croissance par voie chimique des nanofils en ZnO, puis la conception de la matrice d’électrodes contactant individuellement les nanofils. La première se découpe en deux étapes : d’abord le choix d’une couche de germination favorisant la croissance sur puce silicium et compatible avec les procédés de salle blanche ; ensuite le développement d’un procédé de croissance permettant la localisation des nanofils au sein d’une matrice d’électrodes. La seconde moitié du travail de fabrication a consisté à définir et à optimiser l’empilement technologique respectant toutes les considérations abordées jusqu’alors, et à définir les procédés technologiques aboutissant à la fabrication de la matrice finale. / This thesis project deals with the question of heterogeneous integration of interconnected nanowires on microelectronics chips in a view to MEMS and NEMS type devices. These devices aim to address the global problematic of “More than Moore”, that is the transformation of classical CMOS microelectronics processes to enable the development of new integrated micro and nanocomponents.In particular, over the past few years, a variety of nanomaterial-based devices have arisen, revealing micro-actuators and micro-sensors with new functionalities and/or improved performances, e.g. in terms of resolution, sensitivity, selectivity. Here we will focus on a certain type of nanostructures, Zinc Oxide (ZnO) nanowires, which have mostly been used so far to design devices whose working principle exploits the piezoelectric effect, often judiciously combined with their semiconducting properties. Indeed, when submitted to a mechanical constraint or displacement, piezoelectric nanowires generate an electrical potential (piezopotential). If, in addition to this, nanowires are also semiconducting, the piezopotential can be exploited to control an external current as a function of the mechanical constraint imposed to the nanowire (piezotronic effect). The advantage of using one-dimensional nanostructures lies into the modularity of both their mechanical and piezoelectric properties, in comparison with the bulk material. Moreover, their integration is now possible thanks to growth processes compatible with microelectronic processes (CMOS/MEMS). All these considerations make it possible to design very high performance devices combining the very small dimension of their functional unit elements (hence a high integration density which implies a high spatial resolution) and their sensitivity to nanoscale phenomena.In this project, we will adopt a very technology-oriented vision of the design of vertically-aligned ZnO-piezoelectric-nanowire matrix-type sensors. Relying on theoretical performance predictions and technological choices to solve device design and fabrication issues, this study aims to produce proof-of-concept prototypes of these high performance devices. First of all, the design process is elaborated based on finite element multiphysics models (FEM) of the piezoelectric response of a single bent nanowire, which we upgraded towards complete pixels, representative of an interconnected nanowire within a matrix. Following these considerations, we have imagined means of characterization of the piezoelectric response of a wire, then of a pixel. The implemented characterization experiment highlighted the complexity of carrying out a systematic, calibrated piezoelectric measurement, decorrelated from the environment of the pixel. Adequate technological solutions could then be implemented through the fabrication of elementary pixels suitable for characterization and whose piezoelectric response could be predictively modeled.This technological part of the work encompassed several development stages, including the chemical growth of ZnO nanowires and the design of the electrode matrix contacting the nanowires individually. The former splits into two steps: first choosing a clean-room compatible seed layer which will favor growth on a Silicon chip; secondly developing a selective growth process enabling the localization of nanowires within a predefined matrix of electrodes. The second part of the fabrication work focused on defining and optimizing the technological stack with respect to all the above mentioned considerations, and implementing the technological processes yielding the final targeted matrix.
|
6 |
Modélisation et conception des micro commutateurs RF MEMS a actionnement électrostatique et/ou piezoélectriqueAchkar, Hikmat 17 July 2009 (has links) (PDF)
La majorité des MEMS RF (Micro Electro Mechanical Systems Radio Fréquence) sont actionnés en utilisant une force électrostatique. La distance entre les deux électrodes est ainsi modifiée pour transmettre ou couper le signal RF. Ce type d'actionnement, malgré ses avantages, a un défaut majeur qui concerne le chargement des diélectriques. Ce dernier mène à terme à la défaillance du dispositif. Pour résoudre ou minimiser ce problème, nous avons travaillé dans deux directions. La première consiste à utiliser l'actionnement piézo-électrique à la place de l'actionnement électrostatique. La seconde direction concerne l'amélioration du comportement mécanique de la structure en augmentant la force de rappel sans modifier la tension d'actionnement. Les designs proposés ont été validés en utilisant une plateforme de simulation multi-physique.
|
7 |
Sintering of cerium oxide based materials by microwave heating / Frittage des matériaux à base de l’oxyde de cérium par chauffage micro-ondesHammoud, Hussein 25 March 2016 (has links)
L'objectif principal de cette thèse est l'évaluation de la technologie de chauffage par micro-ondes et son applicabilité dans l'étape de densification, dans le cadre d’un procédé de recyclage des déchets nucléaires à très longue vie et ensuite le suivi du procédé de frittage de l'oxyde de cérium, simulant de l’oxyde de plutonium. Dans ce travail, nous avons développé un système permettant de déterminer les propriétés diélectriques de l'oxyde de cérium et avons fait une étude comparative entre le frittage par chauffage micro-ondes dans une cavité monomode et le frittage conventionnel dans un dilatomètre classique pour deux poudres de cérine: l’une de taille micrométrique, la seconde de taille nanométrique. En outre, nous avons effectué des simulations numériques sur la base d’un modèle couplant électromagnétisme et transfert de chaleur. Ces travaux ont montré l’effet de la taille d’une particule sphérique modèle sur le champ électrique (E) dans la particule et autour d’elle. Dans le cadre d’empilements modèles, nous avons montré que la présence d’un cou entre ces particules, leur orientation par rapport au champ E et le nombre de particules constitutives de cet empilement jouent un rôle déterminant sur l’intensité du champ E, ce qui a des conséquences sur le chauffage des particules. / The main objective of this thesis is the evaluation of the heating by microwave technology and its applicability in the densification step, as a part of nuclear long life wastes recycling process and then the following up of the sintering of cerium oxide, a non-radioactive simulant of plutonium oxide. In this work, we developed a system for determining the dielectric properties of cerium oxide and made a comparative study between the sintering by microwave heating in a single-mode cavity and the conventional sintering in a dilatometer for two different powders of ceria: the first one has a micrometric particle size and the second has a nanometric one. In addition, we performed several numerical simulations on the basis of a model coupling electromagnetics and heat transfer. In these works, we have shown the effect of the size of a spherical model particle on the electric field (E) inside and around the particle. In the framework of a packing model of particles, the presence of a neck between these particles, their orientation relative to E field, and the number of these particles showed a decisive role in the intensity of the E field which has a direct impact on the heating of the particles.
|
Page generated in 0.1503 seconds