• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Évaluation et optimisation de systèmes de taxis collectifs en simulation

Lioris,, Eugénie 17 December 2010 (has links) (PDF)
Le développement économique d'une région urbaine est lié à son accessibilité. Le rôle des taxis est reconnu mondialement mais c'est un moyen très coûteux, pas abordable quotidiennement par tous. Pour abaisser les coûts, il faudrait faire partager le service par plusieurs utilisateurs tout en préservant ses qualités essentielles (trajet presque direct, service porte à porte) en accroissant la productivité de ses véhicules devenus "collectifs". Cette idée a été étudiée en 1971, par P.H. Fargier et G. Cohen, considérée toujours comme révolutionnaire et prématurée par un marché strictement réglementé. Avec une révision de la réglementation, cette extension du service des taxis, si on lui donnait l'opportunité de se mettre en place, pourrait permettre aux taxis de prendre leur part du transport public en s'adressant à la majorité de la population et pas seulement à une minorité de privilégiés pouvant assumer le prix d'un transfert individuel.
2

Optimisation du développement de nouveaux produits dans l'industrie pharmaceutique par algorithme génétique multicritère / Multiobjective optimization of New Product Development in the pharmaceutical industry

Perez Escobedo, José Luis 03 June 2010 (has links)
Le développement de nouveaux produits constitue une priorité stratégique de l'industrie pharmaceutique, en raison de la présence d'incertitudes, de la lourdeur des investissements mis en jeu, de l'interdépendance entre projets, de la disponibilité limitée des ressources, du nombre très élevé de décisions impliquées dû à la longueur des processus (de l'ordre d'une dizaine d'années) et de la nature combinatoire du problème. Formellement, le problème se pose ainsi : sélectionner des projets de Ret D parmi des projets candidats pour satisfaire plusieurs critères (rentabilité économique, temps de mise sur le marché) tout en considérant leur nature incertaine. Plus précisément, les points clés récurrents sont relatifs à la détermination des projets à développer une fois que les molécules cibles sont identifiées, leur ordre de traitement et le niveau de ressources à affecter. Dans ce contexte, une approche basée sur le couplage entre un simulateur à événements discrets stochastique (approche Monte Carlo) pour représenter la dynamique du système et un algorithme d'optimisation multicritère (de type NSGA II) pour choisir les produits est proposée. Un modèle par objets développé précédemment pour la conception et l'ordonnancement d'ateliers discontinus, de réutilisation aisée tant par les aspects de structure que de logique de fonctionnement, a été étendu pour intégrer le cas de la gestion de nouveaux produits. Deux cas d'étude illustrent et valident l'approche. Les résultats de simulation ont mis en évidence l'intérêt de trois critères d'évaluation de performance pour l'aide à la décision : le bénéfice actualisé d'une séquence, le risque associé et le temps de mise sur le marché. Ils ont été utilisés dans la formulation multiobjectif du problème d'optimisation. Dans ce contexte, des algorithmes génétiques sont particulièrement intéressants en raison de leur capacité à conduire directement au front de Pareto et à traiter l'aspect combinatoire. La variante NSGA II a été adaptée au problème pour prendre en compte à la fois le nombre et l'ordre de lancement des produits dans une séquence. A partir d'une analyse bicritère réalisée pour un cas d'étude représentatif sur différentes paires de critères pour l'optimisation bi- et tri-critère, la stratégie d'optimisation s'avère efficace et particulièrement élitiste pour détecter les séquences à considérer par le décideur. Seules quelques séquences sont détectées. Parmi elles, les portefeuilles à nombre élevé de produits provoquent des attentes et des retards au lancement ; ils sont éliminés par la stratégie d'optimistaion bicritère. Les petits portefeuilles qui réduisent les files d'attente et le temps de lancement sont ainsi préférés. Le temps se révèle un critère important à optimiser simultanément, mettant en évidence tout l'intérêt d'une optimisation tricritère. Enfin, l'ordre de lancement des produits est une variable majeure comme pour les problèmes d'ordonnancement d'atelier. / New Product Development (NPD) constitutes a challenging problem in the pharmaceutical industry, due to the characteristics of the development pipeline, namely, the presence of uncertainty, the high level of the involved capital costs, the interdependency between projects, the limited availability of resources, the overwhelming number of decisions due to the length of the time horizon (about 10 years) and the combinatorial nature of a portfolio. Formally, the NPD problem can be stated as follows: select a set of R and D projects from a pool of candidate projects in order to satisfy several criteria (economic profitability, time to market) while copying with the uncertain nature of the projects. More precisely, the recurrent key issues are to determine the projects to develop once target molecules have been identified, their order and the level of resources to assign. In this context, the proposed approach combines discrete event stochastic simulation (Monte Carlo approach) with multiobjective genetic algorithms (NSGA II type, Non-Sorted Genetic Algorithm II) to optimize the highly combinatorial portfolio management problem. An object-oriented model previously developed for batch plant scheduling and design is then extended to embed the case of new product management, which is particularly adequate for reuse of both structure and logic. Two case studies illustrate and validate the approach. From this simulation study, three performance evaluation criteria must be considered for decision making: the Net Present Value (NPV) of a sequence, its associated risk defined as the number of positive occurrences of NPV among the samples and the time to market. Theyv have been used in the multiobjective optimization formulation of the problem. In that context, Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to their ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect. NSGA II has been adapted to the treated case for taking into account both the number of products in a sequence and the drug release order. From an analysis performed for a representative case study on the different pairs of criteria both for the bi- and tricriteria optimization, the optimization strategy turns out to be efficient and particularly elitist to detect the sequences which can be considered by the decision makers. Only a few sequences are detected. Among theses sequences, large portfolios cause resource queues and delays time to launch and are eliminated by the bicriteria optimization strategy. Small portfolio reduces queuing and time to launch appear as good candidates. The optimization strategy is interesting to detect the sequence candidates. Time is an important criterion to consider simultaneously with NPV and risk criteria. The order in which drugs are released in the pipeline is of great importance as with scheduling problems.
3

Un système réactif d'aide à la décision pour le transport intermodal de marchandises / A reactive decision support system for intermodal freight transportation

Wang, Yunfei 02 March 2017 (has links)
Le transport fluvial de conteneurs constitue une activité économique importante qui suscite un intérêt grandissant de la part de scientifiques. Considéré comme durable et économique, le transport par barge a été identifié comme étant une alternative compétitive pour le transport de marchandises, en complément des modes traditionnels de transport, routier et ferroviaire. Néanmoins, les travaux de recherche en rapport avec la planification et le management du transport par barge, en particulier dans le contexte du transport intermodal, sont encore peu abondants. Le but de cette thèse est d’apporter une contribution dans ce domaine, par la proposition de modèles et de méthodes de planification et gestion avancées, dans le cadre d’un système d’aide à la décision pour le transport de conteneurs par barge développé pour accompagner les opérateurs de transport. La méthodologie proposée fait appel à des concepts et principes de gestion du revenu, des ressources et des services de transport pour la conception de plans de services réguliers avec horaires, au niveau tactique. Les opérateurs de transport peuvent ainsi offrir des plans de transport avec des services plus flexibles pour leurs clients, tout en assurant un meilleur niveau de fiabilité. Plus de demandes de transport pourront ainsi être satisfaites, avec globalement une plus grande satisfaction des chargeurs. Une originalité importante proposée par notre approche est l’utilisation de principes et techniques de gestion du revenu (segmentation du marché, classes tarifaires...) aussi bien au niveau opérationnel de la modélisation qu’au niveau tactique. Les problèmes d’optimisation sont formalisés sous forme de modèles de programmation linéaire mixte en nombres entiers (PLNE), implémentés et testés sous différentes configurations de réseaux de transport et différents scénarios de demandes, et ce pour chaque niveau de décision. Au niveau tactique, une nouvelle approche de résolution, combinant la recherche adaptative à voisinage large (ALNS) et la recherche taboue, est proposée pour résoudre des problèmes PLNE de grande taille. Une plateforme de simulation, qui intègre les niveaux tactique et opérationnel de prise de décision, est proposée pour la validation du système d’aide à la décision sous différentes configurations : différentes topologies du réseau physique, différents paramètres pour la gestion du revenu, différents degrés de précision caractérisant les prévisions de demande. Pour l’analyse des résultats numériques ainsi obtenus, plusieurs types d’indicateurs de performance sont proposés et utilisés. / Barge transportation is an important research topic that started to draw increasing scientific attention in the recent decade. Considered as sustainable, environment-friendly and economical, barge transportation has been identified as a competitive alternative for freight transportation, complementing the traditional road and rail modes. However, contributions related to barge transportation, especially in the context of intermodal transportation, are still scarce. The objective of this thesis is to contribute to fill this gap by proposing a reactive decision support system for freight intermodal barge transportation from the perspective of the carriers. The proposed system incorporates resource and revenue management concepts and principles to build the optimal set of scheduled services plans at the tactical level. Carriers may thus benefit from transportation plans offering increased flexibility and reliability. They could thus serve more demands and better satisfy customers. One novelty of the approach is the application of revenue management considerations (e.g., market segmentation and price differentiation) at both operational and tactical planning levels. The optimization problems are mathematically formalized and mixed integer linear programming (MILP) models are proposed, implemented and tested against various network settings and demand scenarios, for each decision level. At the tactical level, a new solution approach, combining adaptive large neighborhood search (ALNS) and Tabu search is designed to solve large scale MILP problems. An integrated simulation framework, including the tactical and the operational levels jointly, is proposed to validate the decision support system in different settings, in terms of physical network topology, revenue management parameters and accuracy degree of demand forecasts. To analyze the numerical results corresponding to the solutions of the optimization problems, several categories of performance indicators are proposed and used.

Page generated in 0.1369 seconds