• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 2
  • Tagged with
  • 9
  • 9
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact de l'aérosol sur le cycle de vie des nuages de couche limite

Sandu, Irina 08 November 2008 (has links) (PDF)
L'aérosol anthropique peut affecter le cycle de vie des nuages de couche limite, en modifiant l'albédo du nuage et en inhibant la formation des précipitations. Cependant, il est difficile de quantifier ces impacts à partir d'observations. Les interactions aérosol-nuages de couche limite sont donc étudiées à l'aide des modèles numériques à résolution fine (LES), qui disposent de paramétrisations détaillées de la turbulence, du transfert radiatif et de la microphysique nuageuse. Dans cette étude, nous examinons plus spécifiquement les impacts de l'aérosol sur le cycle diurne de stratocumulus marins. Des simulations LES d'un cycle de 36 heures sont réalisées pour des concentrations d'aérosol typiques de masses d'air pures et polluées. Partant d'un même état initial, les simulations divergent rapidement. L'augmentation de la concentration des noyaux de condensation nuageux conduit à une augmentation de la concentration des gouttelettes, à une diminution de leur diamètre, et ainsi à l'inhibition de leur sédimentation et de la précipitation de bruine. Le contenu en eau liquide au sommet nuage augmente et l'entraînement sommital est renforcé. De plus, l'absorption du rayonnement solaire à la base du nuage n'est plus compensée par l'évaporation de la bruine et le découplage de la couche nuageuse est renforcé. Dans l'ensemble, la couche limite polluée est mieux couplée la nuit et plus découplée le jour que la couche limite marine pure. Ces simulations permettent d'identifier des signatures mesurables de l'impact des aérosols sur la dynamique de la couche limite, et ainsi de mieux concevoir les expériences de terrain qui visent à quantifier ces impacts.
2

Syngas ash deposition for a three row film cooled leading edge turbine vane

Sreedhran, Sai Shrinivas 10 August 2010 (has links)
Coal gasification and combustion can introduce contaminants in the solid or molten state depending on the gas clean up procedures used, coal composition and operating conditions. These byproducts when combined with high temperatures and high gas stream velocities can cause Deposition, Erosion, and Corrosion (DEC) of turbine components downstream of the combustor section. The objective of this dissertation is to use computational techniques to investigate the dynamics of ash deposition in a leading edge vane geometry with film cooling. Large Eddy Simulations (LES) is used to model the flow field of the coolant jet-mainstream interaction and the deposition of syngas ash in the leading edge region of a turbine vane is modeled using a Lagrangian framework. The three row leading edge vane geometry is modeled as a symmetric semi-cylinder with a flat afterbody. One row of coolant holes is located along the stagnation line and the other two rows of coolant holes are located at ±21.3° from the stagnation line. The coolant is injected at 45° to the vane surface with 90° compound angle injection. The coolant to mainstream density ratio is set to unity and the freestream Reynolds number based on leading edge diameter is 32000. Coolant to mainstream blowing ratios (B.R.) of 0.5, 1.0, 1.5, and 2.0 are investigated. It is found that the stagnation cooling jets penetrate much further into the mainstream, both in the normal and lateral directions, than the off-stagnation jets for all blowing ratios. Jet dilution is characterized by turbulent diffusion and entrainment. The strength of both mechanisms increases with blowing ratio. The adiabatic effectiveness in the stagnation region initially increases with blowing ratio but then generally decreases as the blowing ratio increases further. Immediately downstream of off-stagnation injection, the adiabatic effectiveness is highest at B.R.=0.5. However, in spite of the larger jet penetration and dilution at higher blowing ratios, the larger mass of coolant injected increases the effectiveness with blowing ratio further downstream of injection location. A novel deposition model which integrates different sources of published experimental data to form a holistic numerical model is developed to predict ash deposition. The deposition model computes the ash sticking probabilities as a function of particle temperature and ash composition. This deposition model is validated with available experimental results on a flat plate inclined at 45°. Subsequently, this model was then used to study ash deposition in a leading edge vane geometry with film cooling for coolant to mainstream blowing ratios of 0.5, 1.0, 1.5 and 2.0. Ash particle sizes of 5, 7, 10μm are considered. Under the conditions of the current simulations, ash particles have Stokes numbers less than unity of O(1) and hence are strongly affected by the flow and thermal fields generated by the coolant interaction with the main-stream. Because of this, the stagnation coolant jets are successful in pushing and/or cooling the particles away from the surface and minimizing deposition and erosion in the stagnation region. Capture efficiency for eight different ash compositions are investigated. Among all the ash samples, ND ash sample shows the highest capture efficiency due to its low softening temperature. A trend that is common to all particle sizes is that the percentage capture efficiency is least for blowing ratio of 1.5 as the coolant is successful in pushing the particles away from the surface. However, further increasing the blowing ratio to 2.0, the percentage capture efficiency increases as more number of particles are transported to the surface by strong mainstream entrainment by the coolant jets. / Ph. D.
3

Large Eddy Simulations of Sand Transport and Deposition in the Internal Cooling Passages of Gas Turbine Blades

Singh, Sukhjinder 28 March 2014 (has links)
Jet engines often operate under dirty conditions where large amounts of particulate matter can be ingested, especially, sand, ash and dirt. Particulate matter in different engine components can lead to degradation in performance. The objective of this dissertation is to investigate sand transport and deposition in the internal cooling passages of turbine blades. A simplified rectangular geometry is simulated to mimic the flow field, heat transfer and particle transport in a two pass internal cooling geometry. Two major challenges are identified while trying to simulate particle deposition. First, no reliable particle-wall collision model is available to calculate energy losses during a particle wall interaction. Second, available deposition models for particle deposition do not take into consideration all the impact parameters like impact velocity, impact angle, and particle temperature. These challenges led to the development of particle wall collision and deposition models in the current study. First a preliminary simulation is carried out to investigate sand transport and impingement patterns in the two pass geometry by using an idealized elastic collision model with the walls of the duct without any deposition. Wall Modeled Large Eddy Simulations (WMLES) are carried to calculate the flow field and a Lagrangian approach is used for particle transport. The outcome of these simulations was to get a qualitative comparison with experimental visualizations of the impingement patterns in the two pass geometry. The results showed good agreement with experimental distributions and identified surfaces most prone to deposition in the two pass geometry. The initial study is followed by the development of a particle-wall collision model based on elastic-plastic deformation and adhesion forces by building on available theories of deformation and adhesion for a spherical contact with a flat surface. The model calculates deformation losses and adhesion losses from particle-wall material properties and impact parameters and is broadly applicable to spherical particles undergoing oblique impact with a rigid wall. The model is shown to successfully predict the general trends observed in experiments. To address the issue of predicting deposition, an improved physical model based on the critical viscosity approach and energy losses during particle-wall collisions is developed to predict the sand deposition at high temperatures in gas turbine components. The model calculates a sticking or deposition probability based on the energy lost during particle collision and the proximity of the particle temperature to the softening temperature. For validation purposes, the deposition of sand particles is computed for particle laden jet impingement on a coupon and compared with experiments conducted at Virginia Tech. Large Eddy Simulations are used to calculate the flow field and heat transfer and particle dynamics is modeled using a Lagrangian approach. The results showed good agreement with the experiments for the range of jet temperatures investigated. Finally the two pass geometry is revisited with the developed particle-wall collision and deposition model. Sand transport and deposition is investigated in a two pass internal cooling geometry at realistic engine conditions. LES calculations are carried out for bulk Reynolds number of 25,000 to calculate flow and temperature field. Three different wall temperature boundary conditions of 950 oC, 1000 oC and 1050 oC are considered. Particle sizes in the range 5-25 microns are considered, with a mean particle diameter of 6 microns. Calculated impingement and deposition patterns are discussed for different exposed surfaces in the two pass geometry. It is evident from this study that at high temperatures, heavy deposition occurs in the bend region and in the region immediately downstream of the bend. The models and tools developed in this study have a wide range of applicability in assessing erosion and deposition in gas turbine components. / Ph. D.
4

Dynamique de la Couche Limite Atmosphérique stable en relief complexe. Application aux épisodes de pollution particulaire des vallées alpines.

Largeron, Yann 26 November 2010 (has links) (PDF)
L'étude se concentre sur l'analyse de la dynamique de la Couche Limite Atmosphérique stable et hivernale en vallée, notamment dans des situations conduisant à des épisodes de pollution particulaire. L'analyse est effectuée à partir de simulations numériques de type LES et de mesures locales. Dans une première partie, on étudie les vents catabatiques prenant naissance sur les pentes des vallées encaissées. On montre qu'ils sont instationnaires, inhomogènes et turbulents, que leur diffusivité turbulente évolue quadratiquement avec le nombre de Froude et décroît avec la stratification ambiante. On s'intéresse ensuite au champ d'ondes internes généré par ces vents. On trouve que sa fréquence ne dépend que de la stratification et est indépendante des caractéristiques des vents qui lui donnent naissance. Dans une seconde partie, on s'intéresse au système de vents de vallées et aux inversions thermiques dans les vallées Grenobloises. Les conditions météorologiques conduisant aux épisodes de pollution sont étudiées et leur lien avec les mécanismes précédents est explicité. On montre que ces épisodes se déroulent toujours dans un contexte anticyclonique, sont induits par la présence d'une inversion et que leur évolution est liée à celle des régimes de temps. Pendant ces épisodes, le système de vents local est toujours similaire, indépendant du régime synoptique et constitué de vents thermiques, dont l'organisation spatiale est gouvernée par la géométrie du site. Ces courants sont contenus dans la couche d'inversion qui persiste pendant toute la durée de l'épisode et n'est pas détruite si l'énergie solaire est insuffisante. Le seuil énergétique correspondant est mis en évidence.
5

A Numerical Study of Changes to Flow Organization and their Prognostic Measures

Kamin, Manu January 2017 (has links) (PDF)
Flow induced self-oscillations cause acoustic pressure oscillations of large amplitude in pipe flows. If Reynolds number is treated as a parameter, these floinduced oscillations occur only at discrete and critical values of Reynolds number. However, for a small range of Reynolds numbers around such a critical value, such periodic oscillations may appear intermittently. If intermittency, which is a precursor to these self-oscillations, can be detected, prediction of an impending instability may be possible. In experiments done by Vineeth and Sujith (Int. J. Aeroacoustics, 2016) on flow in a duct orifice arrangement, where flow enters through the duct inlet, and leaves into the atmosphere through the orifice exit, “whistling” was observed at a Reynolds number of 4200 (based on the orifice thickness and flow speed within the orifice), where large amplitude pressure oscillations were observed. At slightly lower Reynolds numbers, bursts of relatively smaller amplitudes of pressure oscillations were observed to appear intermittently. For a similar configuration, Large Eddy Simulations (LES) have been carried out with explicit filtering as a sub­ grid scale model here. Both whistling and intermittency are observed in the simulations. As air flows from the duct into the orifice, it turns sharply around the corner at the duct­ orifice interface. Due to this sharp turn, flow separation occurs, and hence, a shear layer is formed at the mouth of the orifice. The mechanism of whistling is found to be this shear layer within the orifice flapping about and hitting the trailing edge of the orifice periodically, thus causing the shear layer to break and roll up into a vortex. At Reynolds numbers where intermittency is observed, the shear layer is found to very mildly come in contact with the edges of the orifice walls, thus disturbing it. In the simulations, time series data of pressure are recorded at various probe locations. In a given time series, if scale invariance behaviour exists, it can be quantified by measuring the Hurst exponent. The numerical value of the Hurst exponent is an index of “long range or short range dependence” in a time series. Hurst exponent is measured in the time series data obtained. It is found to drop to zero as the flow approaches the state of a self-sustained oscillation, since the growth rates of all the long term as well as short term trends in the time series vanish. A loss of multifractality in the time series is also observed as the flow approaches whistling. As a part of the this thesis, new, split high resolution schemes of high order are designed following the Hixon Turmel Proposal.
6

Experimental and Numerical Studies on Spray in Crossflow

Sinha, Anubhav January 2016 (has links) (PDF)
The phenomenon of spray in crossflow is of relevance in gas turbine combustor development. The current work focuses on spray in crossflow rather than liquid jet in crossflow from the standpoint of enhancing fuel dispersion and mixing. Specifically, the first part of the work involves study of spray structure, droplet sizing, and velocimetry for sprays of water and ethanol in a crossflow under ambient conditions. Laser-based diagnostic techniques such as Particle/Droplet Image Analysis (PDIA) and Particle Tracking Velocimetry (PTV) are utilized. Using spray structure images, trajectory equations are derived by multi-variable regression. It is found that the spray trajectory depends only on the two-phase momentum ratio and is independent of other flow parameters. A generalized correlation for the spray trajectory is proposed incorporating the liquid surface tension, which is found to be effective for our data, with water and ethanol, as well as data on Jet-A from the literature for a wide variety of operating conditions. An interesting phenomenon of spatial bifurcation of the spray is observed at low Gas-to-Liquid ratios (GLRs). The reason for this phenomenon is attributed to the co-existence of large and highly deformed ligaments along with much smaller droplets at low GLR conditions. The smaller droplets lose their vertical momentum rapidly leading to lower penetration, whereas the larger ligaments/droplets penetrate much more due to their larger momentum leading to a spatial separation of the two streams. The second part of the study focuses on evaporating sprays in preheated crossflow. Experiments are conducted using ethanol, decane, Jet-A1 fuel, and a two-component surrogate for Jet-A1 fuel. The crossflow air is heated up to 418 K and the effect of evaporation is studied on spray trajectory and droplet sizes. Measured droplet sizes and velocities at two successive locations are used to estimate droplet evaporation lifetimes. Evaporation constant for the d2 law derived from the droplet lifetimes represents the first-ever data for the above-mentioned liquids under forced convective conditions. This data can be used to validate multi-component droplet evaporation models. The last part of the study focuses on Large Eddy Simulations (LES) of the spray in crossflow. The near-nozzle spray structure is investigated experimentally to obtain droplet size and velocity distributions that are used as inputs to the computational model. For the spray in crossflow under ambient conditions, trajectory and droplet sizes at different locations are compared with experimental results. While the predicted trajectory is found to be in good agreement with data, the predicted droplet sizes are larger than the measured values. This is attributed to the implicit assumption in the secondary breakup model that the droplets are spherical, whereas the experimental data in the near-nozzle region clearly shows presence of mostly ligaments and non-spherical droplets, especially for the low GLR cases. A modified breakup model is found to lead to improved agreement in droplet sizes between predictions and measurements. Overall, the experiments and computations have provided significant insight into spray in crossflow phenomenon, and have yielded useful results in terms of validated spray trajectory correlations, droplet evaporation lifetimes under forced convective conditions, and a methodology for simulation of airblast sprays.
7

Étude de la réponse d'un écoulement avec transfert pariétal de masse à un forçage acoustique : application au refroidissement des chambres de combustion aéronautiques / Study of the response of flows with mass transfer at the wall to an acoustic forcing with application to the cooling of aero engine combustion chambers

Florenciano Merino, Juan Luis 12 July 2013 (has links)
L’étude présentée dans cette thèse relève de la mécanique des fluides expérimentale et numérique appliquée aux écoulements pariétaux de refroidissement de chambres de combustion aéronautiques. En présence de phénomènes thermo-acoustiques, comme les instabilités de combustion, il est important d’évaluer si les capacités de l’écoulement pariétal à protéger les parois de chambre restent suffisantes. C’est ainsi que nous nous sommes intéressés aux écoulements de paroi multiperforée soumis à une excitation acoustique. Dans ce but, le banc d’essais MAVERIC a été amélioré grâce à l’installation d’un système qui permet de forcer acoustiquement l’écoulement transverse dans lequel les jets pariétaux débouchent. Nous avons pu alors mettre en évidence la forte sensibilité de ce type d’écoulements à l’excitation acoustique. Le bon accord entre les résultats expérimentaux et les simulations numériques aux grandes échelles (LES) effectuées est très encourageant dans le cas d’un forçage par onde stationnaire. Le forçage par onde progressive, étudié uniquement par simulations numériques, s’est révélé être capable de modifier significativement la topologie de l’écoulement. Enfin, à partir de l’outil numérique AVBP-AVTP qui permet le couplage de calculs fluide-solide, nous avons réalisé une étude de l’influence de la présence d’une excitation acoustique sur le comportement thermique de l’écoulement autour d’une paroi multiperforée de chambre de combustion. / This experimental and numerical study in the field of fluid mechanics deals with jets-in cross flow configurations that are relevant for the cooling of aero engine combustion chambers. Indeed, in presence of instabilities it is important to determine to which extent the film cooling is able to do its job of preserving the combustion chamber walls from the thermal load. The test facility MAVERIC has been upgraded in order to acoustically force the crossflow in which the jets are discharging. The strong sensitivity of the overall flow unsteady properties to the presence of the acoustic forcing has been clearly evidenced. The agreement between the experimental results and large-eddy simulations proved to be quite encouraging for a stationary acoustic wave whereas the case of a propagating acoustic wave investigated only numerically reveals also quite a significant change of the flow topology. In this context, the effect of the acoustic forcing on the wall thermal behavior has been analyzed thanks to the use of the fluid-solid coupled AVBP-AVTP solver.
8

Stably stratified atmospheric boundary layer: study trough large-eddy simulations, mesoscale modelling and observations

Jiménez Cortés, Maria Antònia 12 December 2005 (has links)
La capa límit atmosfèrica és l'àrea directament influenciada per la presència de la superfície de la terra i la seva alçada és d'uns centenars de metres a uns pocs quilòmetres. Durant el vespre, el refredament radiatiu estratifica establement l'aire prop del sòl i es forma el que es coneix com a Capa Límit Estable (CLE). D'avui en dia, la CLE és un règim que encara no està prou ben caracteritzat. La turbulència, que no és homogènia ni isòtropa, i la gran importància dels efectes locals com l'orografia, entre d'altres factors, dificulten l'estudi d'aquest règim. Per aquest motiu, la CLE és objecte d'especial atenció, sobretot a l'hora de millorar la seva representació en models tant de temps com de clima.Aquest treball es centra en l'estudi de la CLE mitjançant 3 eines diferents: 1) simulacions explícites de grans remolins (més conegudes com a simulacions LES), per determinar el comportament dels moviments turbulents, on les resolucions són de l'ordre de metres; 2) simulacions mesoscalars, per caracteritzar els efectes locals, on les resolucions són de l'ordre de kilòmetres; 3) anàlisi de les observacions sota aquestes condicions per tal de caracteritzar i entendre millor els fenòmens observats.En primer lloc s'estudia el rang d'estabilitats a on el model LES, que considera la teoria de Kolmogorov per la dissipació de l'energia, funciona correctament. Els resultats del model són realistes tal com mostra la seva comparació amb les mesures de dues campanyes experimentals (SABLES-98 i CASES-99). Per explorar més a fons els resultats LES i per comparar-los amb les mesures s'han utilitzat les Funcions de Distribució de Probabilitat (PDF). Aquests resultats LES són també comparables als obtinguts amb altres models LES, tal com mostra la intercomparació de models LES, més coneguda com a GABLS.Un cop desenvolupades totes les eines necessàries es fa un LES d'un cas més realista, basat en les observacions d'un màxim de vent de capes baixes (més conegut com a Low-Level Jet, LLJ). L'anàlisi combinat dels resultats LES i les mesures permet entendre millor els processos de barreja que tenen lloc a través de la inversió. Finalment, la contribució dels efectes locals s'estudia mitjançant les simulacions mesoscalars, en aquest cas centrades a l'illa de Mallorca. Durant el vespre es veu com les circulacions locals es desenvolupen a les conques (de longitud al voltant de 25km), formant-se, per exemple, vents catabàtics o LLJ com l'estudiat anteriorment. En aquest cas les simulacions es verifiquen amb imatges de satèl·lit NOAA i observacions de les estacions automàtiques de mesures, donant resultats semblants. / The atmospheric boundary layer is the area directly influenced by the presence of the Earth's surface and its height is from hundreds of meters to few kilometres. During the night, the radiative cooling stratifies the layer close to the surface and it forms the Stably-stratified Atmospheric Boundary Layer (SBL). Nowadays, the SBL is a regime not well enough characterized, yet. Turbulence, which is not homogeneous either isotropic, and the great importance of the local effects, like the orography, among other factors, make the SBL be a difficult regime to study. Even so, the SBL is an object of special attention, especially when improving its representation in numerical prediction models or climate models.This work focuses on the study of the SBL through 3 different tools: 1) Large-Eddy Simulations (LES), to determine the turbulent motions, where the resolutions are about 1m; 2) Mesoscale simulations, to characterize the local effects, where resolutions are about 1km; 3) Analysis of the observations under these conditions in order to better characterize and understand the observed phenomena.In first place, it is studied the range of stabilities where the LES model, that considers the Kolmogorov theory for the dissipation of the energy, works correctly. The results are realistic as the comparison with measures from two experimental campaigns (SABLES-98 and CASES-99) shows. To explore the results more thoroughly, and to compare the LES results to the measurements, the Probability Density Functions (PDF) have been used. The LES results are also comparable to the ones obtained with other LES models, as the intercomparison of different LES models show, better known as GABLS.Then, a more realistic case is performed using the LES model, based on observations of a Low-Level Jet (LLJ). The combined inspection of the LES results and the observations allow to better understand the mixing processes that take place through the inversion layer. Finally, the contribution of the local effects is studied through a mesoscale simulation. Here the attention is focused on the Mallorca Island. During the night, the model is able to reproduce the local circulations is a basin of a characteristic size of 25km. The main features obtained previously from the LES of the LLJ are also reproduced by the mesoscale model. These runs are verified with NOAA satellite images and observations from the automatic surface weather stations, giving that the model is able to reproduce realistic results.
9

Computational Study of the Injection Process in Gasoline Direct Injection (GDI) Engines

Martínez García, María 02 September 2022 (has links)
[ES] La creciente preocupación por los problemas medioambientales, la disponibilidad de combustibles fósiles unido a la gran demanda de vehículos, han llevado a los gobiernos a regular las emisiones emitidas a la atmósfera. Existen propuestas de adoptar fuentes de energía renovables. Sin embargo, la sustitución de los combustibles derivados del petróleo no será fácil, rápida o rentable, y el transporte propulsado por motores de combustión interna (ICE) seguirá destacando en los próximos años. La eficiencia de la combustión y el rendimiento del motor están influenciados por el complejo proceso de inyección. La inyección directa de gasolina (GDI) aumenta el ahorro de combustible y cumple los requisitos de emisiones contaminantes, aunque queda potencial por descubrir. Por ello, ha sido objeto de estudio en los últimos años y, en consecuencia, de la presente Tesis. Este trabajo tiene como motivación mejorar el entendimiento en el campo del GDI. La compleja naturaleza transitoria del proceso de inyección hace que el estudio experimental sea un desafío. La Mecánica de Fluidos Computacional (CFD) surge como una potente alternativa a los experimentos y ha sido adoptada para esta investigación. Bajo este contexto, el objetivo de la presente Tesis es desarrollar una metodología predictiva para la caracterización hidráulica del inyector, capaz de ser aplicada a las actuales y futuras generaciones de inyectores GDI, independientemente de las características del inyector y del software de estudio. Una vez validada, el objetivo posterior es utilizar los resultados para analizar el comportamiento del chorro. Este enfoque busca seguir los pasos de la comunidad científica sustituyendo la práctica experimental. La validación de la metodología se lleva a cabo mediante su aplicación en dos inyectores GDI solenoides multi-orificio diferentes. Además, se han utilizado dos códigos CFD comerciales: CONVERGE y StarCCM+. La metodología predictiva se centra en el estudio del flujo interno y el campo cercano para caracterizar hidráulicamente el inyector. El problema a tratar se define como un sistema multifásico en un marco Euleriano y considerando un único fluido. El tratamiento del flujo multifásico se realiza mediante el enfoque Volume-of-Fluid (VOF). Además, se emplea el Homogeneous Relaxation Model (HRM) para considerar el intercambio de masa entre las fases líquida y vapor debido a cavitación y flash boiling. La turbulencia se ha tratado a partir de los enfoques Reynolds-Averaged Navier-Stokes (RANS) y Large Eddy Simulations (LES). Por otro lado, en cuanto al estudio del flujo externo, se ha adoptado el Discrete Droplet Model (DDM). La atomización y el chorro están influenciados por la geometría de la tobera, por lo que la estrategia de acoplamiento del flujo interno y externo complementa los análisis. Se han adoptado enfoques de acoplamiento unidireccional y mapeado, utilizando como parámetros de entrada los datos de flujo interno de la validada metodología. Esta Tesis aporta una nueva y valiosa metodología predictiva con una elevada precisión a la hora de caracterizar el proceso de inyección en comparativa con datos experimentales. Por otro lado, es directamente trasferible a distintos códigos de cálculo así como aplicable a inyectores con características dispares sin perjudicar las exigencias del modelo. La correcta caracterización del flujo interno ha permitido emplear los datos obtenidos para analizar el comportamiento del chorro eliminando la necesidad de usar datos experimentales. Los resultados obtenidos capturan el comportamiento macroscópico del chorro con una precisión comparable a los experimentos. Aunque todavía hay muchos retos que afrontar, la presente Tesis supone un gran avance en el campo del GDI. El remarcable progreso se debe al desarrollo y uso de una metodología totalmente predictiva, que permite prescindir de la mayoría de los experimentos para contribuir a una mayor y más amplia visión de la física del proceso de inyección. / [CA] La creixent preocupació pels problemes ambientals, la limitada disponibilitat de combustibles fòssils, acompanyat a la gran demanda de vehicles, ha portat el govern a regular els nivells d'emissions emesos a l'atmosfera. Existeixen propostes d'adoptar fonts d'energia renovables. Tanmateix, la substitució dels combustibles líquids derivats del petroli no es durà a terme de forma fàcil, ràpida o rentable, i el transport propulsat per motors de combustió interna (ICE) continuarà destacant en els pròxims anys. L'eficiència de la combustió i el rendiment del motor són fortament influenciats pel complex procés d'injecció. La injecció directa de gasolina (GDI) augmenta l'estalvi de combustible i complix amb els requisits d'emissions, encara que queda molt potencial per descobrir. Per això, aquest ha sigut objecte d'investigació en els últims anys i, com a conseqüència, d'aquesta Tesi. Aquest treball té com a motivació millorar l'enteniment en el camp del GDI. La complexa natura transitòria de la injecció fa que l'estudi experimental siga força complex. La Mecànica de Fluids Computacional (CFD) sorgeix com una potent alternativa als experiments, i ha sigut adoptada per aquesta investigació. Baix aquest mateix context, es proposa com a objectiu principal d'aquesta Tesi el desenvolupament d'una metodologia predictiva per a la caracterització hidràulica de l'injector, capaç de ser aplicada a les actuals i futures generacions d'injectors GDI (independentment de les característiques de l'injector i del software d'estudi). Una vegada validada, el posterior objectiu és analitzar el comportament de l'esprai. Aquest enfocament busca seguir els passos de la comunitat científica substituint la pràctica experimental. La validació de la metodologia ha sigut duta a terme mitjançant la seva aplicació en dos injectors GDI solenoides multi-orifici. A més, s'han utilitzat dos software CFD comercials: CONVERGE i StarCCM+. La metodologia predictiva se centra en l'estudi del flux intern i el camp proper per tal de caracteritzar hidràulicament l'injector. El problema a tractar es defineix en base a un sistema multi-fàsic en un marc Eulerià i considerant un únic fluid. El tractament del fluid multi-fàsic es realitza mitjançant l'aproximació Volume-of-Fluid (VOF). A més, s'utilitza el Homogeneous Relaxation Model (HRM) per tal de considerar l'intercambi de massa entre les fases líquida i vapor degut als fenòmens de cavitació i flash boiling. La turbulència s'ha tractac a través dels enfocaments Reynolds-Averaged Navier-Stokes (RANS) i Large Eddy Simulations (LES). Pel que fa a l'estudi del fluix extern, s'ha adoptat el Discrete Droplet Model (DDM). Sent conscients que el comportament l'atomització i l'esprai estan influenciats per la geometria de la tovera, l'estratègia d'acoblament del flux intern i extern complementa les anàlisis. S'han adoptat els enfocaments d'acoblament unidireccional i mapejat, utilitzant com a paràmetres d'entrada les dades del flux intern obtingudes amb la validada metodologia. Aquesta Tesi aporta una nova i valuosa metodologia predictiva amb una elevada precisió a l'hora de caracteritzar el procés d'injecció en comparativa amb dades experimentals. És directament transferible a diversos codis de càlcul així com aplicable a injectors amb característiques dispars sense perjudicar les exigències del model. La correcta caracterització del flux intern ha permès utilitzar les dades obtingudes per tal d'analitzar el comportament de l'esprai, eliminant la necessitat d'emprar dades experimentals. Els resultats obtinguts d'aquest estudi capturen el comportament macroscòpic de l'esprai amb una precisió comparable als experiments. Encara que queden molts reptes per afrontar, aquesta Tesi aporta un important avanç al camp del GDI. La ruptura prové del desenvolupament i ús d'una metodologia completament predictiva, que substitueix els experiments requerits i així contribueix a una millor i més ampla visió de la física del procés d'injecció. / [EN] Concerns about climate change, availability of fuel resources and the high demand for vehicles, have led governments to regulate the level of pollution emitted by engines into the atmosphere. There is a strong desire to adopt renewable and sustainable energy sources. However, the substitution of liquid fuels derived from petroleum will not emerge easily, quickly or economically, and Internal Combustion Engines (ICE) will continue to excel for the next few years. Combustion efficiency and engine performance are strongly influenced by the complex fuel injection process. Gasoline Direct Injection (GDI) strategies increase fuel economy and meet emission requirements, although many challenges remain, which has therefore been one of the main research objectives in recent years and of this Thesis. The present research aims to provide a better understanding in the field of GDI. The transient and complex nature of the injection process makes the experimental study of GDI quite challenging. Therefore, Computational Fluid Dynamics (CFD) emerges as a powerful alternative adopted for this research. In this context, the main objective of the present Thesis is to develop a predictive methodology capable of being applied to current and future generations of GDI injectors, regardless of the injector features and the software employed, for the hydraulic characterization of the injector. Once validated, the subsequent goal is to employ the obtained results to analyze the behavior of the spray downstream of the injector. The approach attempts to follow the footsteps of the research community to avoid experimental practice. The predictive methodology has been validated through its application to two multi-hole solenoid GDI injectors with different features. In addition, the mentioned methodology has been evaluated using diverse commercial software: CONVERGE and StarCCM+. The methodology focuses on the study of the internal and near-field flow to hydraulically characterize the injector. So the problem to be addressed is a multi-phase system, performed in an Eulerian framework, modeled through a single-fluid approach. The multi-phase flow is treated by means of the Volume-of-Fluid (VOF) approach. Homogeneous Relaxation Model (HRM) is employed to consider the mass exchange between liquid and vapor fuel phases, due to cavitation and flash boiling. The turbulence treatment has been performed from both Reynolds-Averaged Navier-Stokes (RANS) and Large Eddy Simulations (LES) approaches. Regarding the external flow study, the Discrete Droplet Model (DDM) has been adopted. In addition, being aware that atomization and spray behavior is greatly influenced by the nozzle geometry, the coupling strategy of the internal and external flow complements the analyses. One-way coupling and mapping approaches have been adopted, using as input parameters the internal flow data obtained from the already validated methodology. Accordingly, this Thesis provides a new and valuable predictive methodology, which has demonstrated a high accuracy in characterizing the flow behavior during the injection process through comparison with experimental data. It has also proven to be directly transferable to different CFD software and applicable to injectors with dissimilar characteristics without compromising the requirements of the model. The correct internal flow characterization has made it possible to employ the obtained data to analyze the spray patterns, which eliminates the need to consider experimental data. The outcomes of this study macroscopically capture the jet behavior with an accuracy comparable to experiments under different operating conditions. Although there are still many challenges to face, the present Thesis brings a breakthrough in the field of GDI. The quantum leap arises from the development and use of a fully predictive methodology, allowing to avoid most experiments to contribute to a greater and broader vision of the injection process physics. / María Martínez García has been founded through a grant from the Government of Generalitat Valenciana with reference ACIF/2018/118 and financial support from the European Union. These same institutions, Government of Generalitat Valenciana and the European Union, supported through a grant for pre-doctoral stays out of the Comunitat Valenciana with reference BEFPI/2020/057 the research carried out during the stay at Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, ETH Zurich, Switzerland. Special gratitude from the author to both institutions, Government of Generalitat Valenciana and the European Union, for making this dream possible / Martínez García, M. (2022). Computational Study of the Injection Process in Gasoline Direct Injection (GDI) Engines [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185180

Page generated in 0.114 seconds