21 |
Synthèse de (poly)électrolytes pour accumulateur Li-ion à haute densité d'énergie / Synthesis of (poly)electrolytes for high energy density Li-ion batteryLeclere, Mélody 07 January 2016 (has links)
Les travaux de thèse présentés dans ce manuscrit portent sur le développement nouveaux électrolytes sans recours aux solvants conventionnels inflammables afin de répondre à la problématique de sécurité des batteries. La première partie de ce travail vise à développer des électrolytes gélifiés à partir de liquide ionique phosphonium. Une étude est réalisée sur la compatibilité entre l'électrolyte et le polymère hôte époxy/amine ainsi que de l'influence du LI sur la polymérisation du réseau. Les propriétés thermiques, viscoélastiques et de transport ionique des gels sont discutées. Parmi les électrolytes gélifiés obtenus, le gel contenant l'électrolyte (1 M LiTFSI + LI [P66614][TFSI]) a montré des propriétés électrochimiques intéressantes. Un système gélifié Li|LFP a été mis en œuvre et une bonne stabilité en cyclage à 100 °C a été obtenue. La deuxième partie de ce travail consiste au développement de nouveaux électrolytes mésomorphes favorisant un transport d’ions lithium par saut. Un composé anionique a été synthétisé à partir d’une réaction époxy/amine entre le 4-amino-1-naphtalènesulfonate de lithium et un diglycidylether aliphatique. Différentes techniques de caractérisation ont été utilisées afin d’établir un lien structure/propriétés. Les résultats ont permis de mettre en évidence une organisation supramoléculaire lamellaire permettant d’obtenir des canaux de conduction d’ions lithium. Les mesures de transport ionique ont permis de mettre en évidence un transport d'ions lithium suivant une loi d'Arrhenius (indépendant du squelette moléculaire) ce qui est la preuve d'un mécanisme de transport d'ions lithium par saut. Les premiers tests électrochimiques ont révélé une bonne stabilité de ces électrolytes vis à vis du lithium et un transport d’ions lithium réversible dans une cellule symétrique Li|Li. A l'issue de ces travaux, les perspectives sont discutées afin d'améliorer les performances de ces électrolytes. / The thesis work presented in this manuscript focuses on the development of new electrolytes without the use of flammable conventional solvents to improve the security problem batteries. The first part of this work is the preparation of gelled electrolytes from phosphonium ionic liquid. A study is performed on the compatibility between the electrolyte and the polymer host epoxy / amine as well as the influence of the polymerization LI on the network. The thermal properties, and ionic transport viscoelastic gels are discussed. Among the obtained gelled electrolyte, the gel containing the electrolyte (1 M LiTFSI + LI [P66614] [TFSI]) showed interesting electrochemical properties. A gelled system Li | LFP has been implemented and good cycling stability at 100 ° C was obtained. The second part of this work is the development of new liquid crystal electrolytes promotes transport of lithium ions with hopping mechanism. An anionic compound was synthesized from reaction of an epoxy / amine from lithium 4-amino-1-naphthalenesulfonate and an aliphatic diglycidyl ether. Various characterization technical were used to establish a link structure / properties. The results allowed to show a lamellar supramolecular organization to obtain lithium ion conduction channels. The ion transport measurement helped to highlight a transport of lithium ions following an Arrhenius law (independent of the molecular backbone) which is evidence of a transport mechanism of lithium ions with hopping mechanism. The first electrochemical tests showed good stability of these electrolytes with lithium electrode and a reversible lithium ion transport in a symmetrical cell Li | Li. Following this work, the prospects are discussed to improve the performance of these electrolytes.
|
22 |
Strategies for Overcoming Ionic Transport Limitations in Polymer ElectrolytesSebastian Ignacio Calderon Cazorla (20370924) 17 December 2024 (has links)
<p dir="ltr">Solid-polymer electrolytes constitute an attractive alternative to flammable liquid electrolytes, but their low ionic conductivity (σ) and transference number (<i>t</i><sub>+</sub>) are not sufficient to replace current liquid electrolytes. In turn, the rational design of new materials is of ultimate importance to overcome the main limitation to high ionic conductivity: the close relationship between ion transport and polymer segmental relaxation. On one hand, the strategy to overcome such issue is designing new composite polymer electrolytes (CPEs) where ceramic particles can modify the properties of the polymer host by increasing the amorphous fraction, enhance the dissociation of salts, hinder the diffusion of anions, and/or create new Li<sup>+</sup> conduction pathways at the interface ceramic/polymer. One of the main obstacles to achieving higher performance is the limited understanding of transport mechanism and the effect of ceramic filler on the physical properties, ion transport, and interactions with the CPE constituent materials. The dielectric properties of polymers play a critical role in the ability of the polymer to dissolve salts and mediate the electrostatic interactions between the cations and the polymer chain. To further study the effect of the CPE dielectric constant and its impact on ionic conductivity, in this thesis the effect on incorporating High Entropy Oxides (HEO) that possess colossal permittivity into PEO/LiTFSI matrixes is reported. The results show that particles of 700 nm average diameter yield ionic conductivities > 10<sup>‑4</sup> S cm<sup>‑1</sup>. Measurements of the complex dielectric function reveal an increase in the rate of relaxation of the ion-coupled chain dynamics. This is in line with the reduced Tg observed in DSC analysis. DSC also reveals no significant change in the degree of crystallinity and results based on FTIR do not indicate a significant dissociation of Li-salt compared to the PEO-based SPE. Finally, the addition of these high dielectric constant fillers of smaller size produces a radical change in the polymer microstructure because of their integration with the polymer matrix. In summary, these results suggest that the improvement in IC is likely due to the formation of efficient Li-pathways involving fast-moving amorphous polymer. Further studies are needed to determine the effect of the HEO fillers on the bonding interactions between the Li cations and the oxygen groups of the polymer. An additional strategy to overcome limitations in ion-transport of polymer electrolytes was pursued in this work through the design of new polymer structures. Single ion-conducting polymer electrolytes (SICPEs) can restrict the diffusion of anions which is responsible for the development of polarization gradients in rechargeable batteries, under high charge/discharge conditions. The design of poly (Li-FAST-<i>alt</i>-DEG) is intended to regulate other aspects such as Li<sup>+</sup> concentration and free volume of the polymer. Whereas the synthesis of oligomers was successfully accomplished, challenges in the synthetic process hindered the fabrication of the polymer.</p>
|
Page generated in 0.0572 seconds